ARTICLES

Selective Synthesis of Unsymmetrical N-Heteroaryl Thioethers byBase-Free Direct Multi-Component Reaction

  • Qi Wang ,
  • Boran Zhu ,
  • Guang Yang ,
  • Xiantao Ma ,
  • Qing Xu
Expand
  • a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002
    b College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000
    c College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035
* Corresponding authors. E-mail: ;

Received date: 2020-08-17

  Revised date: 2020-10-04

  Online published: 2020-10-28

Supported by

National Natural Science Foundation of China(21672163); Graduate Research and Innovation Program of Yangzhou University(XKYCX19_064); Key Scientific and Technological Project of Henan Province(192102310031)

Abstract

Heteroaryl thioethers, especially alkyl heteroaryl thioethers, were usually obtained by catalytic or non-catalytic coupling reactions under strong basic conditions, but these methods usually have many drawbacks such as generation of large amounts of wastes. In this work, a new method for the direct synthesis of N-heteroaryl thioethers through a base-, additive-, and solvent-free one-pot multi-component reaction of N-heteroaryl halides, thiourea, and alkyl bromides was reported. This method can employ thiourea as the sulfur surrogate and tolerate various alkyl bromides and N-heteroaryl halides, providing a concise, selective, and efficient new method for heteroaryl thioether synthesis.

Cite this article

Qi Wang , Boran Zhu , Guang Yang , Xiantao Ma , Qing Xu . Selective Synthesis of Unsymmetrical N-Heteroaryl Thioethers byBase-Free Direct Multi-Component Reaction[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1193 -1199 . DOI: 10.6023/cjoc202008030

References

[1]
(a) Xu, X.; Li, C.; Xiong, M.; Tao, Z.; Pan, Y. Chem. Commun. 2017, 53, 6219.
[1]
(b) Niazi, M.; Shahsavari, H. R.; Haghighi, M. G.; Halvagar, M. R.; Hatami, S.; Notash, B. RSC Adv. 2016, 6, 95073.
[1]
(c) Tasker, S. Z.; Bosscher, M. A.; Shandro, C. A.; Lanni, E. L.; Ryu, K. A.; Snapper, G. S.; Utter, J. M.; Ellsworth, B. A.; Anderson, C. E. J. Org. Chem. 2012, 77, 8220.
[1]
(d) Xie, Y.; Zhou, B.; Zhou, S.; Zhou, S.; Wei, W.; Liu, J.; Zhan, Y.; Cheng, D.; Chen, M.; Li, Y.; Wang, B.; Xue, X.-S.; Li, Z. ChemistrySelect 2017, 2, 1620.
[1]
(e) Ye, X.; Moeljadi, A. M.; Chin, K. F.; Hirao, H.; Zong, L.; Tan, C. H. Angew. Chem. Int. Ed. 2016, 55, 7101.
[1]
(f) Seto, M.; Miyamoto, N.; Aikawa, K.; Aramaki, Y.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Shiraishi, M. Bioorg. Med. Chem. 2005, 13, 363.
[1]
(g) Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890.
[1]
(h) Sun, F.; Liu, X.; Chen, X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2017, 37, 2211. (in Chinese)
[1]
(孙丰莉, 刘学民, 陈新志, 钱超, 葛新, 有机化学, 2017, 37, 2211.)
[1]
(i) Tang, H.; Luo, J.; Xie, P. Chin. J. Org. Chem. 2019, 39, 2735. (in Chinese)
[1]
(唐灏, 骆钧飞, 解攀, 有机化学, 2019, 39, 2735.)
[1]
(j) Huang, B.; Li, X.; Luo, J.; Luo, Z.; Tan, M. Chin. J. Org. Chem. 2019, 39, 617. (in Chinese)
[1]
(黄国保, 李秀英, 罗金荣, 罗志辉, 谭明雄, 有机化学, 2019, 39, 617.)
[2]
(a) Molaei, S.; Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Polyhedron 2018, 156, 35.
[2]
(b) Garnier, T.; Danel, M.; Magne, V.; Pujol, A.; Beneteau, V; Pale, P; Chassaing, S. J. Org. Chem. 2018, 83, 6408.
[2]
(c) Baker, A.; Graz, M.; Saunders, R.; Evans, G. J. S.; Pitotti, I.; Wirth, T. J. Flow Chem. 2015, 5, 65.
[2]
(d) Guo, F.-J.; Sun, J.; Xu, Z.-Q.; Kühn, F. E.; Zang, S.-L.; Zhou, M.-D. Catal. Commun. 2017, 96, 11.
[2]
(e) Manivel, P.; Prabakaran, K.; Krishnakumar, V.; Maxivalagan, T. Ind. Eng. Chem. Res. 2014, 53, 7866.
[2]
(f) Zhao, J.; Fang, H.; Han, J.; Pan, Y.; Li, G. Adv. Synth. Catal. 2014, 356, 2719.
[3]
(a) Gholinejad, M.; Karimi, B.; Mansouri, F. J. Mol. Catal. A: Chem. 2014, 386, 20.
[3]
(b) Bhardwaj, M.; Sahi, S.; Mahajan, H.; Paul, S.; Clark, J. H. J. Mol. Catal. A: Chem. 2015, 408, 48.
[3]
(c) Ichiishi, N.; Malapit, C. A.; Wozniak, L.; Sanford, M. S. Org. Lett. 2018, 20, 44.
[3]
(d) Legarda, P. D.; García-Rubia, A.; Gómez Arrayás, R.; Carretero, J. C. Adv. Synth. Catal. 2016, 358, 1065.
[3]
(e) Mao, J.; Jia, T.; Frensch, G.; Walsh, P. J. Org. Lett. 2014, 16, 5304.
[3]
(f) Lu, G.; Cai, C. RSC Adv. 2014, 4, 59990.
[3]
(g) Hajipour, A. R.; Hosseinia, S. M.; Jaiamia, S. New J. Chem. 2017, 41, 7447.
[3]
(h) Hajipour, A. R.; Hosseinia, S. M.; Jaiamia, S. ChemistrySelect 2017, 2, 2388.
[4]
(a) Goriya, Y.; Ramana, C. V. Tetrahedron 2010, 66, 7642. b6ad49d1-996f-4a5e-848d-447b5a893994
[4]
(b) Sreedhar, B.; Reddy, P.; Reddy, M. Synthesis 2009,1732.
[5]
(a) Niu, H. Y.; Xia, C.; Qu, G. R.; Wu, S.; Jiang, Y.; Jin, X.; Guo, H. M. Asian J. Chem. 2012, 7, 45.
[5]
(b) Mondal, J.; Modak, A.; Dutta, A.; Basu, S.; Jha, S. N.; Bhattacharyya, D.; Bhaumik, A. Chem. Commun. 2012, 48, 8000.
[5]
(c) Gholinejad, M.; Karimi, B.; Mansouri, F. J. Mol. Catal. A: Chem. 2014, 386, 20.
[5]
(d) Bhardwaj, M.; Sahi, S.; Mahajan, H.; Paul, S.; Clark, J. H. J. Mol. Catal. A: Chem. 2015, 408, 48.
[5]
(e) Mao, J.; Jia, T.; Frensch, G.; Walsh, P. J. Org. Lett. 2014, 16, 5304.
[6]
(a) Goriya, Y.; Ramana, C. V. Tetrahedron 2010, 66.7642.
[6]
(b) Naeimi, H.; Moradian, M. Synlett 2012,2223.
[6]
(c) Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.
[6]
(d) Screedhar, B.; Reddy, P. S.; Reddy, M. A.; Synthesis 2009,1732.
[6]
(e) Guo, F.; He, X.; Wang, J.; Sun, J.; Zhou, M. Chin. J. Org. Chem. 2017, 37, 1556. (in Chinese)
[6]
(郭芳杰, 何雨轩, 王景芸, 孙京, 周明东, 有机化学, 2017, 37, 1556.)
[7]
Bagley, M. C.; Fusillo, V.; Hills, E. G. B.; Mulholland, A. T.; Newcombe, J.; Pentecost, L. J.; Radley, E. L.; Stephens, B. R.; Turrella, C. C. ARKIVOC, 2012, vii, 294.
[8]
(a) Liu, H.; Jiang, X. Chem. Asian J. 2013, 8, 2546.
[8]
(b) Nguyen, T. B. Adv. Synth. Catal. 2017, 359, 1066.
[8]
(c) Wang, N.; Saidhareddy, P.; Jiang, X. Nat. Prod. Rep. 2020, 37, 246.
[8]
(d) Distler, H. Angew. Chem. Int. Ed. 1967, 6, 544.
[8]
(e) Qiao, Z.; Jiang, X. Org. Biomol. Chem. 2017, 15, 1942.
[8]
(f) Cheng, L.; Ge, X.; Liu, X.; Feng, Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
[8]
(成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.)
[9]
(a) Jia, X.; Yu, L.; Liu, J.; Xu, Q.; Sickert, M.; Chen, L.; Lautens, M. Green Chem. 2014, 16, 3444.
[9]
(b) Ma, X.; Liu, Q.; Jia, X.; Su, C.; Xu, Q. RSC Adv. 2016, 6, 56930.
[9]
(c) Yang, Y.; Ye, Z.; Zhang, X.; Zhou, Y.; Ma, X.; Cao, H.; Li, H.; Yu, L.; Xu, Q. Org. Biomol. Chem. 2017, 15, 9638.
[9]
(d) Liu, C.; Zang, X.; Yu, B.; Yu, X.; Xu, Q. Synlett 2011,143.
[10]
(a) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359, 1649.
[10]
(b) Ma, X.; Yu, J.; Yan, R.; Xu, Q. J. Org. Chem. 2019, 84, 11294.
[11]
In our previous work, it has been observed that the contaminant water in the substrates and the reaction vessel (Ref. [10a]) and even the crystal water (Ref. [10b]) can facilitate the sulfur transfer reactions. As having been discussed (Ref. [10] and references cited therein), water plays a key role in the reaction mechanism by hydrolyzing the in situ generated ionic intermediates (such as 4 and 6 in this work, Scheme 3) to the corresponding thiols. However, in this work, addition of water to the reactions of other alkyl halides mostly led to reduce the yields of products. This may be due to the easy hydrolysis of the alkyl halides in the presence of water. This may also mean that, in this work, the contaminant water in the substrates and the reaction vessel is adequate to facilitate the reactions and thus no additional water is needed.
[12]
Brussaard, Y.; Olbrich, F.; Schaumann, E. Inorg. Chem. 2013, 52, 13160.
[13]
Guo, F.; Sun, J.; Xu, Z.; Kühn, F. E.; Zang, S.; Zhou, M. Catal. Commun. 2017, 96, 11.
[14]
Du, B.; Quan, Z.; Da, Y.; Zhang, Y.; Wang, X. Adv. Synth. Catal. 2015, 357, 1270.
[15]
Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem. Eur. J. 2009, 15, 3666.
[16]
Zhao, J.; Fang, H.; Han, J.; Pan, Y.; Li, G. Adv. Synth. Catal. 2014, 356, 2719.
[17]
Han, X.; Wu, J. Org. Lett. 2010, 12, 5780.
Outlines

/