ARTICLES

Copper-Catalyzed C—H Bond and N—H Bond Insertion Reaction Based on Azide-Ynamide Cyclization

  • Xiaotao Liu ,
  • Xin Liu ,
  • Longwu Ye
Expand
  • a Wanxiang Technology Co., Ltd., Huaian, Jiangsu 223300
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005
    c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences, Shanghai 200032
* Corresponding authors. E-mail: ;

Received date: 2020-09-08

  Revised date: 2020-10-02

  Online published: 2020-10-28

Supported by

National Natural Science Foundation of China(21772161)

Abstract

A copper-catalyzed azide-ynamide cyclization to synthesize isoquinoline derivatives is reported. First, α-imino copper carbene intermediate is generated via Cu(I)-catalyzed azide-ynamide cyclization, then this copper carbene can be captured by indoles and anilines to form C—H and N—H insertion products. The notable advantages of this method include a simple procedure, mild reaction conditions and widespread availability of the substrates. Thus, this protocol provides a highly convenient and efficient route for the preparation of natural products and active molecules which contain the isoquinoline-indole or isoquinoline-aniline skeletons.

Cite this article

Xiaotao Liu , Xin Liu , Longwu Ye . Copper-Catalyzed C—H Bond and N—H Bond Insertion Reaction Based on Azide-Ynamide Cyclization[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1207 -1215 . DOI: 10.6023/cjoc202009020

References

[1]
For selected reviews, see: (a) Khan, A. Y.; Suresh Kumar, G. Biophys. Rev. 2015, 7, 407.
[1]
(b) Iranshahy, M.; Quinn, R. J.; Iranshahi, M. RSC Adv. 2014, 4, 15900.
[1]
(c) Bentley, K. W. Nat. Prod. Rep. 2006, 23, 444.
[1]
(d) Bentley, K. W. Nat. Prod. Rep. 2005, 22, 249.
[1]
(e) Bentley, K. W. Nat. Prod. Rep. 2004, 21, 395.
[1]
(f) Bentley, K. W. The Isoquinoline Alkaloids, Hardwood Academic, Amsterdam, 1998, Vol. 1.
[1]
(g) Phillipson, J. D.; Roberts, M. F.; Zenk, M. H. The Chemistry and Biology of Isoquinoline Alkaloids, Springer Verlag, Berlin, 1985.
[2]
(a) Wang, S.-B.; Wang, X.-F.; Qin, B.; Ohkoshi, E.; Hsieh, K.-Y.; Hamel, E.; Cui, M.-T.; Zhu, D.-Q.; Goto, M.; Morris-Natschke, S. L.; Lee, K.-H.; Xie, L. Bioorg. Med. Chem. 2015, 23, 5740.
[2]
(b) Smith, N. D.; Bonnefous, C.; Zhuang, H.; Chen, X.; Duron, S.; Lindstrom, A. WO 2009029617, 2009.
[2]
(c) Arrington, K. L.; Dudkin, V. Y.; Fraley, M. E.; Garbaccio, R. M.; Hartman, G. D.; Huang, S. Y.; Kreatsoulas, C.; Tasber, E. S. WO 2007008502, 2007.
[2]
(d) Allen, J. R.; Amegadzie, A. K.; Gardinier, K. M.; Gregory, G. S.; Hitchcock, S. A.; Hoogestraat, P. J.; Jones, W. D. Jr; Smith, D. L. WO 2005066126, 2005.
[2]
(e) Hopper, A.; Schumacher, R. A.; Tehim, A.; De Vivo, M.; Brubaker, W. F. Jr.; Liu, R.; Hess, H.-J. E.; Unterbeck, A. WO 2002074726, 2002. .
[3]
For recent selected reviews on the generation of metal carbenes from alkynes, see: (a) Ye, L.-W.; Zhu, X.-Q.; Sahani, R. L.; Xu, Y.; Qian, P.-C.; Liu, R.-S. Chem. Rev. 2021, 121, DOI: 10.1021/acs.chemrev.0c00348.
[3]
(b) Sahani, R. L.; Ye, L.-W.; Liu, R.-S. Adv. Organomet. Chem. 2020, 73, 195.
[3]
(c) Chen, L.; C hen, K; Zhu, S. Chem 2018, 4, 1208.
[3]
Liao, Y.; Zhu, L.; Yu, Y.; Chen, G.; Huang, X. Chin. J. Org. Chem. 2017, 37, 2785. (in Chinese)
[3]
(廖云, 朱磊, 俞颖华, 陈贵, 黄学良, 有机化学, 2017, 37, 2785.)
[3]
(e) Zi, W.; Toste, F. D. Chem. Soc. Rev. 2016, 45, 4567.
[3]
(f) Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev. 2016, 45, 4533.
[3]
(g) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
[3]
(h) Jia, M.; Ma, S. Angew. Chem., Int. Ed. 2016, 55, 9134.
[3]
(i) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028.
[3]
(j) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem.-Eur. J. 2015, 21, 7332.
[3]
(k) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 667.
[3]
(l) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
[4]
For reviews, see: (a) Aguilar, E.; Santamaría, J. Org. Chem. Front. 2019, 6, 1513.
[4]
(b) Davies, P. W.; Garzón, M. Asian J. Org. Chem. 2015, 4, 694.
[5]
For selected examples, see: (a) Zhu, X.-Q.; Wang, Z.-S.; Hou, B.-S.; Zhang, H.-W.; Deng, C.; Ye, L.-W. Angew. Chem., Int. Ed. 2020, 59, 1666.
[5]
(b) Tian, X.; Song, L.; Farshadfar, K.; Rudolph, M.; Rominger, F.; Oeser, T.; Ariafard, A.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2020, 59, 471.
[5]
(c) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 6935.
[5]
(d) Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 12736.
[5]
(e) Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 1026.
[5]
(f) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
[5]
(g) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.
[6]
For selected examples, see: (a) Garzón, M.; Davies, P. W. Org. Lett. 2014, 16, 4850.
[6]
(b) Chatzopoulou, E.; Davies, P. W. Chem. Commun. 2013, 49, 8617.
[6]
(c) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931.
[6]
(d) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738.
[7]
For a review, see: Tian, X.; Song, L; Hashmi, A. S. K Chem.-Eur. J. 2020, 26, 3197.
[8]
For selected examples, see: (a) Kawada, Y.; Ohmura, S.; Kobayashi, M.; Nojo, W.; Kondo, M.; Matsuda, Y.; Matsuoka, J.; Inuki, S.; Oishi, S.; Wang, C.; Saito, T.; Uchiyama, M.; Suzuki, T.; Ohno, H. Chem. Sci. 2018, 9, 8416.
[8]
(b) Lonca, G. H.; Tejo, C.; Chan, H. L.; Chiba, S.; Gagosz, F. Chem. Commun. 2017, 53, 736.
[8]
(c) Matsuoka, J.; Matsuda, Y.; Kawada, Y.; Oishi, S.; Ohno, H. Angew. Chem., Int. Ed. 2017, 56, 7444.
[8]
(d) Yan, Z.-Y.; Xiao, Y.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624.
[8]
(e) Wetzel, A.; Gagosz, F. Angew. Chem.. Int. Ed. 2011, 50, 7354.
[8]
(f) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358.
[8]
(g) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
[9]
For recent reviews on ynamide reactivity, see: (a) Hong, F.-L.; Ye, L.-W. Acc. Chem. Res. 2020, 53, 2003.
[9]
(b) Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W. ACS Catal. 2019, 9, 6393.
[9]
(c) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
[9]
(d) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
[9]
(e) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
[9]
(f) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[9]
(g) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[10]
For selected examples by our group, see: (a) Liu, X.; Wang, Z.-S.; Zhai, T.-Y.; Luo, C.; Zhang, Y.-P.; Chen, Y.-B.; Deng, C.; Liu, R.-S.; Ye, L.-W. Angew. Chem., Int. Ed. 2020, 59, 17984.
[10]
(b) Hong, F.-L.; Chen, Y.-B.; Ye, S.-H.; Zhu, G.-Y.; Zhu, X.-Q.; Lu, X.; Liu, R.-S.; Ye, L.-W. J. Am. Chem. Soc. 2020, 142, 7618.
[10]
(c) Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Zhu, C.; Ye, L.-W. J. Am. Chem. Soc. 2020, 142, 3636.
[10]
(d) Huang, E.-H.; Zhang, Z.-X.; Ye, S.-H.; Chen, Y.-B.; Luo, W.-F.; Qian, P.-C.; Ye, L.-W. Chin. J. Chem. 2020, 38, 1086.
[10]
(e) Li, H.-H.; Ye, S.-H.; Chen, Y.-B.; Luo, W.-F.; Qian, P.-C.; Ye, L.-W. Chin. J. Chem. 2020, 38, 263.
[10]
(f) Hong, F.-L.; Wang, Z.-S.; Wei, D.-D.; Zhai, T.-Y.; Deng, G.-C.; Lu, X.; Liu, R.-S.; Ye, L.-W. J. Am. Chem. Soc. 2019, 141, 16961.
[10]
(g) Xu, Y.; Sun, Q.; Tan, T.-D.; Yang, M.-Y.; Yuan, P.; Wu, S.-Q.; Lu, X.; Hong, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2019, 58, 16252.
[10]
(h) Zhou, B.; Zhang, Y.-Q.; Zhang, K.; Yang, M.-Y.; Chen, Y.-B.; Li, Y.; Peng, Q.; Zhu, S.-F.; Zhou, Q.-L.; Ye, L.-W. Nat. Commun. 2019, 10, 3234.
[10]
(i) Li, L.; Zhu, X.-Q.; Zhang, Y.-Q.; Bu, H.-Z.; Yuan, P.; Chen, J.; Su, J.; Deng, X.; Ye, L.-W. Chem. Sci. 2019, 10, 3123.
[10]
(j) Zheng, R.-H.; Guo, H.-C.; Yang, M.-Y.; Liu, M.-Q.; Ye, L.-W. Chin. J. Org. Chem. 2019, 39, 1672. (in Chinese)
[10]
(郑人华, 郭海昌, 阳明洋, 刘梦琪, 叶龙武, 有机化学, 2019, 39, 1672.)
[10]
(k) Zhu, J.; Ren, X.; Tang, F.; Pan, F.; Ye, L.-W. Chin. J. Org. Chem. 2019, 39, 1102. (in Chinese)
[10]
(朱建荣, 任小娟, 唐飞宇, 潘飞, 叶龙武, 有机化学, 2019, 39, 1102.)
[10]
(l) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
[10]
(m) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
[10]
(n) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
[11]
Feng, J.; Yi, X.; Fu, Y.; Yu, Y.; Huang, F. Chin. J. Org. Chem. 2019, 39, 3013. (in Chinese)
[11]
(封佳俊, 易享炎, 傅耀锋, 于杨, 黄菲, 有机化学, 2019, 39, 3013.)
[12]
Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
[13]
Badigenchala, S.; Rajeshkumar, V.; Sekar, G. Org. Biomol. Chem. 2016, 14, 2297.
Outlines

/