ARTICLES

Synthesis of Nopinone-Based Quinazolin-2-amine Fluorescent Probe for Detection of Cu2+ and Its Application Research

  • Mingguang Zhang ,
  • Mingxin Li ,
  • Yiqin Yang ,
  • Xu Xu ,
  • Jie Song ,
  • Zhonglong Wang ,
  • Shifa Wang
Expand
  • a Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food,Nanjing Forestry University, Nanjing 210037, China
    b Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI 48502, USA
* Corresponding authors. E-mail: ;

Received date: 2020-08-26

  Revised date: 2020-10-22

  Online published: 2020-11-04

Supported by

National Natural Science Foundation of China(32071707); Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract

In this study, a novel nopinone-based quinazolin-2-amine fluorescent probe N-benzyl-4-(4-(diethylamino)phenyl)- 7,7-dimethyl-5,6,7,8-tetrahydro-6,8-methanoquinazolin-2-amine (BNQ) was synthesized from renewable β-pinene derivative nopinone. The probe BNQ exhibited a high selective fluorescence quenching response toward Cu2+in PBS/THF (V/V=8/2, 10 mmol?L–1, pH=7.4) solution, and could effectively recognize Cu2+ within a wide pH range (4~10). Meanwhile, the fluorescent titration experiment showed that the probe BNQ was high sensitive for detecting Cu2+, and its detection limit was found to be 0.09 μmol?L –1, which was much lower than that of stated by World Health Organization (WHO) in drinking water (<30 μmol?L–1). Furthermore, the coordination mechanism of probe BNQ with Cu2+ was confirmed by high resolution mass spectrum (HRMS) and density functional theory (DFT) calculations. The probe BNQ could detect micromolar Cu2+ in different environmental water samples. The results of bio-imaging experiment demonstrated that the probe BNQwas also successfully used for monitoring Cu2+ in living zebrafish, and showed an excellent fluorescence imaging performance.

Cite this article

Mingguang Zhang , Mingxin Li , Yiqin Yang , Xu Xu , Jie Song , Zhonglong Wang , Shifa Wang . Synthesis of Nopinone-Based Quinazolin-2-amine Fluorescent Probe for Detection of Cu2+ and Its Application Research[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1168 -1176 . DOI: 10.6023/cjoc202008049

References

[1]
Chen, S. H.; Pang, C. M.; Chen, X. Y.; Yan, Z. H.; Huang, S. M.; Li, X. D.; Zhong, Y. T.; Wang, C. Y. Chin. J. Org. Chem. 2019, 39, 1846. (in Chinese)
[1]
(陈思鸿, 庞楚明, 陈孝云, 严智浩, 黄诗敏, 李香弟, 钟雅婷, 汪朝阳, 有机化学, 2019, 39, 1846.)
[2]
Yue, Y.; Huo, F.; Cheng, F. Chem. Soc. Rev. 2019, 48, 4155.
[3]
Ma, C.; Zhong, G.; Zhao, Y. Spectrochim. Acta, Part A 2020,118545.
[4]
Singh, H.; Tiwari, K.; Tiwari, R. Chem. Rev. 2019, 119, 11718.
[5]
Chen, X.; Pradhan, T.; Wang, F. Chem. Rev. 2012, 112, 1910.
[6]
Cao, D.; Liu, Z.; Verwilst, P. Chem. Rev. 2019, 119, 10403.
[7]
Shi, Y.; Yu, Y. W.; Xue, L.; Wang, Y. F. Chin. J. Org. Chem. 2019, 39, 3414. (in Chinese)
[7]
(石岩, 于有伟, 薛林, 王延风, 有机化学, 2019, 39, 3414.)
[8]
Zhao, Y.; Luo, Y.; Wang, H. Anal. Chim. Acta 2019, 1065, 134.
[9]
Patil, A.; Salunke, G. S. Inorg. Chim. Acta 2018, 482, 99.
[10]
Han, Z.; Nan, D.; Yang, H. Sens. Actuators, B 2019, 298, 126842.
[11]
Murugan, N.; Prakash, M.; Jayakumar, M. Appl. Surf. Sci. 2019, 476, 468.
[12]
Zhang, Y.; Li, H.; Pu, S. J. Photochem. Photobiol., A 2020,112721.
[13]
Wang, R.; Zhang, L.; Liu, R. Carbohydr. Polym. 2019, 223, 115117.
[14]
Meng, X. J.; Zhao, J. Z.; Ma, W. B. Chin. J. Org. Chem. 2020, 40, 276. (in Chinese)
[14]
(孟宪娇, 赵晋忠, 马文兵, 有机化学, 2020, 40, 276.)
[15]
Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.
[16]
Mathie, A.; Sutton, G. L.; Clarke, C. E. Pharmacol. Ther. 2006, 111, 567.
[17]
Georgopoulos, A.; Yonone, L. M.; Opiekun, R. E. J. Toxicol. Environ. Health, Part B 2001, 4, 341.
[18]
Barnham, K.; Masters, C.; Bush, A. Nat. Rev. Drug Discovery 2004, 3, 205.
[19]
Meng, Q.; Shi, Y.; Wang, C. Org. Biomol. Chem. 2015, 13, 2918.
[20]
Chen, D.; Chen, P.; Zong, L. R. Soc. Open Sci. 2017, 4, 171161.
[21]
Chen, F.; Hou, F.; Huang, L. Dyes Pigm. 2013, 98, 146.
[22]
Gaggelli, E.; Kozlowski, H.; Valensin, D. Chem. Rev. 2006, 106, 1995.
[23]
Dell'Acqua, S.; Pirota, V.; Anzani, C.; Rocco, M. M.; Nicolis, S.; Valensin, D.; Monzani, E.; Casella, L. Metallomics 2015, 7, 1091.
[24]
World Health Organization Guidelines for Drinking-Water Quality, 2004.
[25]
Jonas, R. Appl. Environ. Microbiol. 1989, 55, 43.
[26]
Xiao, Q.; Gao, H.; Yuan, Q. J. Chromatogr., A 2013, 1274, 145.
[27]
Wang, X.; Luo, C.; Li, L. J. Electroanal. Chem. 2015, 757, 100.
[28]
Selvarajan, S.; Alluri, N.; Chandrasekhar, R. Biosensors Bioelectron. 2017, 91, 203.
[29]
Ahmed, K.; Sengan; Veerappan, A. Sens. Actuators, B 2016, 233, 431.
[30]
Li, Y.; Zhou, H.; Yin, S. Sens. Actuators, B 2016, 235, 33.
[31]
He, C.; Zhou, H.; Yang, N. New J. Chem. 2018, 42, 2520.
[32]
Duan, G.; Zhang, G.; Yuan, S. Spectrochim. Acta, Part A 2019, 219, 173.
[33]
Zheng, X.; Ji, R.; Cao, X. Anal. Chim. Acta 2017, 978, 48.
[34]
Wang, Y.; Liu, S.; Chen, H. Dyes Pigm. 2017, 142, 293.
[35]
Liu, S.; Liu, Y.; Pan, H. Tetrahedron Lett. 2.018, 59, 108.
[36]
Feng, Y.; Yang, Y.; Wang, Y. Sens. Actuators, B 2019, 288, 27.
[37]
Yin, G.; Yao, J.; Hong, S. Analyst 2019, 144, 6962.
[38]
Zhang, X.; Sun, P.; Li, F. Sens. Actuators, B 2018, 255, 366.
[39]
Xu, Z.; Wang, H.; Chen, Z. Spectrochim. Acta, Part A 2019, 216, 404.
[40]
Zhu, D.; Luo, Y.; Shuai, L. Tetrahedron Lett. 2016, 57, 5326.
[41]
Choi, M.; Kim, G.; Hong, J. Tetrahedron Lett. 2016, 57, 975.
[42]
Wang, Y.; Zhou, J.; Zhao, L. Dyes Pigm. 2020,108513.
[43]
Huang, C.; Li, H.; Luo, Y. Dalton Trans. 2014, 43, 8102.
[44]
Shen, R.; Yang, J.; Luo, H. Tetrahedron 2017, 73, 373.
[45]
Liu, Y.; Yang, L.; Li, P. Spectrochim. Acta, Part A 2020, 227, 117540.
[46]
Peng, L.; Zhao, Q.; Wang, D. Sens. Actuators, B 2009, 136, 80.
[47]
Jiang, Q.; Wang, Z., Li, M. Dyes Pigm. 2019, 171, 107702.
Outlines

/