REVIEWS

Progress in the Synthesis of Energetic Salts Based on Pyrazole

  • Guanglei Li ,
  • Haifeng Huang ,
  • Jun Yang ,
  • Hongzhen Duan
Expand
  • a School of Science, North University of China, Taiyuan 030051
    b Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190
* Corresponding authors. E-mail: ;

Received date: 2020-09-08

  Revised date: 2020-09-28

  Online published: 2020-11-04

Supported by

Innovation Academy for Green Manufacture, Chinese Academy of Sciences(IAGM2020C06)

Abstract

The pyrazole ring has three modifiable carbon sites and one modifiable NH site. Based on the pyrazole ring, a variety of pyrazole energetic compounds can be designed by the introduction of nitro, nitramino, amino and hydroxyl group and the formation of fused rings. At the same time, compared with conventional energetic compounds such as 2,4,6-trinitro- benzene (TNT), hexahydro-1,3,5-trinitro-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), energetic pyrazoles have the advantages of high nitrogen content, high enthalpy of formation and low sensitivities. In recent years, a large number of energetic salts based on pyrazole have been designed and synthesized around the world, including monocyclic energetic salts, bicyclic energetic salts and fused energetic salts based on pyrazole. Many of them exhibit the characteristics of high energy and low sensitivity. The synthesis and properties of recently reported energetic salts based on pyrazole are reviewed, and their applications in the field of energetic materials are prospected.

Cite this article

Guanglei Li , Haifeng Huang , Jun Yang , Hongzhen Duan . Progress in the Synthesis of Energetic Salts Based on Pyrazole[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1466 -1488 . DOI: 10.6023/cjoc202009019

References

[1]
Yang, G.-C.; Li, X.-D. Chin. J. Energ. Mater. 2018, 26,1000. (in Chinese)
[1]
( 杨光成, 李小东, 含能材料, 2018, 26,1000.)
[2]
Lu, M. Chin. J. Energ. Mater. 2018, 26,373. (in Chinese)
[2]
( 陆明, 含能材料, 2018, 26,373.)
[3]
Huo, H.; Zhang, J.; Dong, J.; Zhai, L.; Guoy, T.; Wang, Z.; Bi, F.; Wang, B. RSC Adv. 2020, 10,11816.
[4]
Fischer, N.; Fischer, D.; Klap?tke, T.M.; Piercey, D.G.; Stierstorfer, J. J. Mater. Chem. 2012, 22,20418.
[5]
Huang, X.-C.; Guo, T.; Liu, M.; Wang, Z.-J.; Qiu, S.-J.; Ge, Z.-X. Chin. J. Energ. Mater. 2015, 23,291. (in Chinese)
[5]
( 黄晓川, 郭涛, 刘敏, 王子俊, 邱少君, 葛忠学, 含能材料, 2015, 23,291.)
[6]
Trache, D.; Klap?tke, T.M.; Maiz, L.; Abd-Elghany, M..; DeLuca, L.T. Green Chem. 2017, 19,4711.
[7]
Oommen, C.; Jain, S.R. J. Hazard. Mater. 1999, 67,253.
[8]
Jos, J.; Mathew, S. Crit. Rev. Solid State Mater. Sci. 2017, 42,470.
[9]
Venkatachalam, S.; Santhosh, G.; Ninan, K.N. Propellants, Explos.,Pyrotech. 2004, 29,178.
[10]
Schoyer, H.F. R.; Welland-Veltmans, W.H. M.; Louwers, J.; Korting, P. A., O.G.; Heijden, A. E., D.M.; Keizers, H.L. J.; Berg, R.P. J. Propul. Power 2002, 18,131.
[11]
Freudenmann, D.; Ciezki, H.K. Propellants, Explos.,Pyrotech. 2019, 44,1084.
[12]
Drake, G.; Hawkins, T.; Brand, A.; Hall, L.; Mckay, M. Propellants, Explos.,Pyrotech. 2003, 28,174.
[13]
Singh, R.P.; Verma, R.D.; Shreeve, J.M. Angew. Chem., Int. Ed. 2006, 45,3584.
[14]
Gao, H.; Shreeve, J.M. Chem. Rev. 2011, 111,7377.
[15]
Gao, H.; Zhang, Q.; Shreeve, J.M. J. Mater. Chem. A 2020, 8,4193.
[16]
He, P.; Zhang, J.G.; Yin, X.; Wu, J.T.; Wu, L.; Zhou, Z.N.; Zhang, T.L. Chem.-Eur. J. 2016, 22,7670.
[17]
Zhang, Y.; Gao, H.; Joo, Y.H.; Shreeve, J.M. Angew Chem., Int. Ed. 2011, 50,9554.
[18]
Zhou, Y.-F.; Wang, T.; Wang, Q.-X.; Gao, H.-X. Chin. J. Energ. Mater. 2018, 26,967. (in Chinese)
[18]
( 周奕霏, 汪涛, 王秋晓, 高海翔, 含能材料, 2018, 26,967.)
[19]
Wang, R.; Xu, H.; Guo, Y.; Sa, R.; Shreeve, J.M. J. Am. Chem. Soc. 2010, 132,11904.
[20]
Dippold, A.A.; Klap?tke, T.M. J. Am. Chem. Soc. 2013, 135,9931.
[21]
Chen, S.; Liu, Y.; Feng, Y.; Yang, X.; Zhang, Q. Chem. Commun. 2020, 56,1493.
[22]
Yang, F.; Zhang, P.; Zhou, X.; Lin, Q.; Wang, P.; Lu, M. Cryst. Growth Des. 2020, 20,3737.
[23]
Zhao, G.; Kumar, D.; Yin, P.; He, C.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Org. Lett. 2019, 21,1073.
[24]
Zhao, T.-X.; Li, L.; Dong, Z.; Zhang, Y.; Zhang, G.-Q.; Huang, M.; Li, H.-B. Chin. J. Org. Chem. 2014, 34,304. (in Chinese)
[24]
( 赵廷兴, 李磊, 董战, 张勇, 张光全, 黄明, 李鸿波, 有机化学, 2014, 34,304.)
[25]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. Chem. Rev. 2011, 111,6984.
[26]
Zheng, K.; Iqbal, S.; Hernandez, P.; Park, H.; LoGrasso, P.V.; Feng, Y. J. Med. Chem. 2014, 57,10013.
[27]
Urich, R.; Grimaldi, R.; Luksch, T.; Frearson, J.A.; Brenk, R.; Wyatt, P.G. J. Med. Chem. 2014, 57,75369.
[28]
Lahm, G.P.; Cordova, D.; Barry, J.D. Bioorg. Med. Chem. 2009, 17,4127.
[29]
Weston, C.E.; Richardson, R.D.; Haycock, P.R.; White, A.J. P.; Fuchter, M.J. J. Am. Chem. Soc. 2014, 136,11878.
[30]
Hervé, G.; Roussel, C.; Graindorge, H. Angew. Chem., Int. Ed. 2010, 49,3177.
[31]
Tang, Y.; Kumar, D.; Shreeve, J.M. J. Am. Chem. Soc. 2017, 139,13684.
[32]
Kumar, D.; He, C.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. J. Mater. Chem. A 2016, 4,9220.
[33]
Yin, P.; Zhang, J.; He, C.; Parrish, D.A.; Shreeve, J.M. J. Mater. Chem. A. 2014, 2,3200.
[34]
Huang, H.; Shi, Y.; Li, H.; Li, H.; Pang, A.; Yang, J. Org. Lett. 2020, 22,5866.
[35]
Drukenmüller, I.E.; Klap?tke, T.M.; Morgenstern, Y.; Rusan, M.; Stierstorfer, J.; Z. Anorg. Allg. Chem. 2014, 640,2139.
[36]
Jiang, T.; Zhang, X.-Y.; Jing, M.; Shu, Y.-J.; Wang, J. Chin. J. Energ. Mater. 2014, 222,654. (in Chinese)
[36]
( 蒋涛, 张晓玉, 景梅, 舒远杰, 王军, 含能材料, 2014, 222,654.)
[37]
Zhao, X.X.; Qi, C.; Zhang, L.B. Molecules 2014, 19,896.
[38]
Politzer, P.; Lane, P.; Murray, J.S. Mol. Phys. 2013, 112,719.
[39]
Wu, J.-P.; Cao, D.-L.; Wang, J.-L.; Liu, Y.; Li, Y.-X. Chin. J. Energ. Mater. 2016, 24,1121. (in Chinese)
[39]
( 吴军鹏, 曹端林, 王建龙, 刘洋, 李永祥, 含能材料, 2016, 24,1121.)
[40]
Wang, W.-J.; Li, H.; Pan, R.-M.; Zhu, W.-H. Chin. J. Org. Chem. 2019, 39,1362. (in Chinese)
[40]
( 王万军, 李欢, 潘仁明, 朱卫华, 有机化学, 2019, 39,1362.)
[41]
Zhang, Y.Q.; Guo, Y.; Joo, Y.H. Chem.-Eur. J. 2010, 116,10778.
[42]
Zhang, Y.Q.; Parrish, D.A.; Shreeve, J.M. J. Mater. Chem. 2012, 22,12659.
[43]
Schmidt, R.D.; Lee, G.S.; Pagoria, P.F.; Mitchell, A.R. J. Heterocycl. Chem. 2001,38, 1227.
[44]
Zhang, Y.Q.; Parrish, D.A.; Shreeve, J.M. Chem.-Eur. J. 2012, 18,987.
[45]
Yin, P.; Parrish, D.A.; Shreeve, J.M. J. Am. Chem. Soc. 2015, 1137,4778.
[46]
Deng, M.-C.; Wang, Y.; Zhang, W.-Q.; Zhang, Q.-H. Chin. J. Energ. Mater. 2017, 25,646. (in Chinese)
[46]
( 邓沐聪, 王毅, 张文全, 张庆华, 含能材料, 2017, 25,646.)
[47]
Yin, P.; Mitchell, L.A.; Parrish, D.A. Chem.-Asian J. 2017, 112,378.
[48]
B?lter, M.F.; Klap?tke, T.M.; Kustermann, T.; Lenz, T.; Stierstorfer, J. Eur. J. Inorg. Chem. 2018, 37,4125.
[49]
Zhang, Y.Y.; Li, Y.N. Dalton Trans. 2019, 448,1524.
[50]
Zhang, Y.Y.; Li, Y.N.; Yu, T.; Liu, Y.Z.; Chen, S.P.; Ge, Z.X.; Sun, C.H.; Pang, S.P. ACS Omega 2019, 44,19011.
[51]
Lei, C.J.; Yang, H.W.; Cheng, G.B. Dalton Trans. 2020, 49,1660.
[52]
Hervé, G.; Roussel, C.; Graindorge, H. Angew. Chem., Int. Ed. 2010, 122,3177.
[53]
Dalinger, I.L.; Vatsadze, I.A.; Shkineva, T.K.; Popova, G.P.; Shevelev, S.A. Mendeleev Commun. 2010, 20,253.
[54]
Ravi, P.; Tewari, S.P. Catal. Commun. 2012, 19,37.
[55]
Ravi, P.; Gore, G.M.; Tewari, S.P.; Sikder, A, K. J. Heterocycl. Chem. 2013, 50,1322.
[56]
Zhao, X.X.; Zhang, J.C.; Li, S.H.; Yang, Q.P.; Liu, Y.C.; Pang, S.P. Org. Process Res. Dev. 2014, 18,886.
[57]
Ravi, P.; Gore, G.M.; Sikder, A.K.; Tewari, S.P. Synth. Commun. 2012, 42,3463.
[58]
B?lter, M.F.; Harter, A.; Klap?tke, T.M.; Stierstorfer, J. ChemPlusChem 2018, 83,804.
[59]
Janssen, J. W., A.M.; Habraken, C.L. J. Org. Chem. 1971, 36,3081.
[60]
Janssen, J. W., A.M.; Koeners, H.J.; Kruse, C.G.; Habraken, C.L. J. Org. Chem. 1973, 38,1777.
[61]
Makosza, M.; Winiarski, J. Acc. Chem. Res. 1987, 20,282.
[62]
Li, C.; Liang, L.X.; Wang, K.; Bian, C.M.; Zhang, J.; Zhou, Z.M. J. Mater. Chem. A 2014, 22,18097.
[63]
Li, C.; Zhang, M.; Chen, Q.S.; Li, Y.Y.; Gao, H.Q.; Fu, W.; Zhou, Z.M. Dalton Trans. 2016, 445,17956.
[64]
Kumar, D.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Chem.-Eur. J. 2017, 23,7876.
[65]
Fu, W.; Zhao, B.J.; Zhang, M.; Li, C.; Gao, H.Q.; Zhang, J.; Zhou, Z.M. J. Mater. Chem. A 2017, 5,5044.
[66]
Tang, Y.X.; Ma, J.C.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Dalton Trans. 2019, 48,14490.
[67]
Sheremetev, A.B.; Yudin, I.L.; Palysaeva, N.V.; Suponitsky, K. Y. J. Heterocycl. Chem. 2012, 49,394.
[68]
Tang, Y.X.; He, C.L.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. J. Mater. Chem. A 2018, 6,5136.
[69]
Xu, M.X.; Cheng, G.B.; Xiong, H.L.; Wang, B.H.; Ju, X.H.; Yang, H.W. New J. Chem. 2019, 43,11157.
[70]
Benz, M.; Klap?tke, T.M.; Stierstorfer, J. Z. Anorg. Allg. Chem. 2020, 646,1.
[71]
Gospodinov, I.; Domasevitch, K.V.; Unger, C.C.; Klap?tke, T.M. Cryst. Growth Des. 2020, 20,755.
[72]
Ma, Q.; Zhang, G.J.; Li, J.; Zhang, Z.Q.; Lu, H.C.; Liao, L.Y.; Fan, G.J.; Nie, F. Chem. Eng. J. 2020, 379,1.
[73]
Tang, Y.; He, C.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Angew. Chem., Int. Ed. 2016, 55,5565.
[74]
Zhang, M.; Fu, W.; Li, C.; Gao, H.Q.; Tang, L.W.; Zhou, Z.M. Eur. J. Inorg. Chem. 2017, 22,2883.
[75]
Schulze, M.C.; Scott, B.L.; Chavez, D.E. J. Mater. Chem. A 2015, 3,17963.
[76]
Klenov, M.S.; Guskov, A.A.; Anikin, O.V.; Churakov, A.M.; Strelenko, Y.A.; Fedyanin, I.V.; Lyssenko, K.A.; Tartakovsky, V.A. Angew. Chem., Int. Ed. 2016, 55,11472.
[77]
Chavez, E.E.; Parrish, D.A.; Mitchell, L.; Imler, G.H. Angew. Chem., Int. Ed. 2017, 56,3575.
[78]
Yin, P.; Zhang, J.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Angew. Chem., Int. Ed. 2017, 56,8834.
[79]
Zhang, J.; Yin, P.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. J. Mater. Chem. A 2016, 4,7430.
[80]
Shevelev, S.A.; Dalinger, I.L.; Shkineva, T.K.; Gulevskaya, B. I., U. V. I.; Kanishichev, M.I. Russ. Chem. Bull. 1993. 42,1063.
[81]
Zhang, J.H.; Parrish, D.A.; Shreeve, J.M. Chem.-Asian J. 2014, 99,2953.
[82]
Yin, P.; He, C.L.; Shreeve, J.M. J. Mater. Chem. A 2016, 4,1514.
[83]
Yin, P.; Zhang, J.H.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Angew. Chem., Int. Ed. 2016, 555,12895.
[84]
Li, Y.N.; Hu, J.J.; Chang, P.; Chen, T.; Zhang, H.W.; Wang, B. Chin. J. Expl. Propell. 2019, 42,341. (in Chinese)
[84]
( 李亚南, 胡建建, 常佩, 陈涛, 张红武, 王彬, 火炸药学报, 2019, 42,341.)
[85]
Xia, H.L.; Zhang, W.Q.; Jin, Y.H. ACS Appl. Mater. Interfaces 2019, 111,45914.
[86]
Zhang, W.Q.; Xia, H.L.; Yu, R.J.; Zhang, J.H.; Wang, K.C.; Zhang, Q.H. Propellants, Explos.,Pyrotech. 2020, 45,546.
[87]
Luo, Y.-F.; Ge, Z.-X.; Wang, B.-Z.; Zhang, H.-H; Liu, X. Chin. J. Energ. Mater. 2007, 15,205. (in Chinese)
[87]
( 罗义芬, 葛忠学, 王伯周, 张海昊, 刘愆, 含能材料, 2007, 15,205.)
[88]
Cameron, M.; Gowenlock, B.G.; Boyd, A.F. J. Chem. Soc.,Perkin Trans. 2 1996, 11,2271.
Outlines

/