REVIEWS

Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells

  • Jiang-Yang Shao ,
  • Yu-Wu Zhong
Expand
  • a Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049
* Corresponding author. E-mail:

Received date: 2020-09-14

  Online published: 2020-11-12

Supported by

Beijing Municipal Natural Science Foundation(2191003); National Natural Science Foundation of China(21975264); National Natural Science Foundation of China(21872154); National Natural Science Foundation of China(21922512)

Abstract

Perovskite solar cells (PSCs) have become the focus of interest among next-generation photovoltaic technologies attributed to their outstanding power conversion efficiency (PCE) (the highest certified PCE of 25.2% being achieved to date), low cost and fabrication feasibility. Perovskite itself is hole-conductive, albeit with a low efficiency. The use of hole transporting material (HTM) remains indispensable for the efficient charge extraction in high-performance PSCs. The recent design and development of low-cost organic small molecules as HTMs in high-performance PSCs with a PCE over 19% are summarized. These HTMs are categorized into materials with spiro core structures, thiophene derivatives, and others, on the basis of their structural features. The relationship between molecular structure and device performance is discussed from the perspective of synthetic strategy and chemical modification. Finally, an outlook is given on the future development of small molecular HTMs.

Cite this article

Jiang-Yang Shao , Yu-Wu Zhong . Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1447 -1465 . DOI: 10.6023/cjoc202009033

References

[1]
(a) Jena, A.K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119,3036.
[1]
(b) Gra?tzel, M. Acc. Chem. Res. 2017, 50,487.
[1]
(c) Yu, D.; Hu, Y.; Shi, J.; Tang, H.; Zhang, W.; Meng, Q.; Han, H.; Ning, Z.; Tian, H. Sci. China: Chem. 2019, 62,684.
[2]
Saliba, M.; Correa-Baena, J.-P.; Gra?tzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem., Int. Ed. 2018, 57,2554.
[3]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131,6050.
[4]
Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; Gr?tzel, M.; Park, N.-G. Sci. Rep. 2012, 2,1.
[5]
Kim, G.; Min, H.; Lee, K.S.; Lee, D.Y.; Yoon, M.; Seok, S.I. Science 2020, 370,108.
[6]
(a) Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.-Z. J. Mater. Chem. A 2017, 5,11462.
[6]
(b) Pham, H.D.; Yang, T.C.; Jain, S.M.; Wilson, G.J.; Sonar, P. Adv. Energy Mater. 2020, 10,1903326.
[6]
(c) Wang, Y.; Han, L. Sci. China: Chem. 2019, 62,822.
[7]
(a) Pham, H.D.; Li, X.; Li, W.; Manzhos, S.; Kyaw, A.K. K.; Sonar, P. Energy Environ. Sci. 2019, 12,1177.
[7]
(b) Rajagopal, A.; Yao, K.; Jen, A.K.-Y. Adv. Mater. 2018,1800455.
[8]
(a) Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A.; Martin, N. Chem. Soc. Rev. 2018, 47,8541.
[8]
(b) Gangala, S.; Misra, R. J. Mater. Chem. A 2018, 6,18750.
[8]
(c) Kim, G.-W.; Choi, H.; Kim, M.; Lee, J.; Son, S.Y.; Park, T. Adv. Energy Mater. 2020,1903403.
[9]
(a) Wang, T.; Ding, D.; Zheng, H.; Wang, X.; Wang, J.; Liu, H.; Shen, W. Sol. RRL 2019, 3,1900045.
[9]
(b) Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Gr?tzel, M. Science 2017, 358,768.
[9]
(c) Cao, J.; Wu, B.; Peng, J.; Feng, X.; Li, C.; Tang, Y. Sci. China: Chem. 2019, 62,363.
[10]
(a) Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Science 2015, 348,1234.
[10]
(b) Jung, E.H.; Jeon, N.J.; Park, E.Y.; Moon, C.S.; Shin, T.J.; Yang, T.Y.; Noh, J.H.; Seo, J. Nature 2019, 567,511.
[11]
Min, H.; Kim, M.; Lee, S.-U.; Kim, H.; Kim, G.; Choi, K.; Lee, J.H.; Seok, S.I. Science 2019, 366,749.
[12]
Rakstys, K.; Saliba, M.; Gao, P.; Gratia, P.; Kamarauskas, E.; Paek, S.; Jankauskas, V.; Nazeeruddin, M.K. Angew. Chem., Int. Ed. 2016 , 55,7464.
[13]
Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.-Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Seok, S.I.; Lee, J.; Seo, J. Nat. Energy 2018, 3,682.
[14]
Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; Angelis, F.D.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Gr?tzel, M.; Nazeeruddin, M.K. Nat. Energy 2016, 1,15017.
[15]
Cao, Y.; Li, Y.; Morrissey, T.; Lam, B.; Patrick, B.O.; Dvorak, D.J.; Xia, Z.; Kelly, T.L.; Berlinguette, C.P. Energy Environ. Sci. 2019, 12,3502.
[16]
Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Gr?tzel, M.; Kloo, L.; Hagfeldt, A.; Sun, L. Energy Environ. Sci. 2016, 9,873.
[17]
Bi, D.; Xu, B.; Gao, P.; Sun, L.; Gr?tzel, M.; Hagfeldt, A. Nano Energy 2016, 23,138.
[18]
Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; Ruan, C.; Li, Y.; Boschloo, G.; Johansson, E.M. J.; Kloo, L.; Hagfeldt, A.; Jen, A.K.-Y.; Sun, L. Chem 2017, 2,676.
[19]
Zhang, J.; Xu, B.; Yang, L.; Ruan, C.; Wang, L.; Liu, P.; Zhang, W.; Vlachopoulos, N.; Kloo, L.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E.M. J. Adv. Energy Mater. 2018, 8,1701209.
[20]
Lee, D.Y.; Sivakumar, G.; Misra, M.R.; Seok, S.I. ACS Appl. Mater. Inter. 2020, 12,28246.
[21]
Gao, K.; Xu, B.; Hong, C.; Shi, X.; Liu, H.; Li, X.; Xie, L.; Jen, A. K-Y. Adv. Energy Mater. 2018, 8,1800809.
[22]
Akin, S.; Bauer, M.; Uchida, R.; Arora, N.; Jacopin, G.; Liu, Y.; Hertel, D.; Meerholz, K.; Mena-Osteritz, E.; Ba?uerle, P.; Zakeeruddin, S.M.; Dar, M.I.; Gra?tzel, M. ACS Appl. Energy Mater. 2020, 3,7456.
[23]
Park, S.J.; Jeon, S.; Lee, I.K.; Zhang, J.; Jeong, H.; Park, J.-Y.; Bang, J.; Ahn, T.K.; Shin, H.-W.; Kim, B.-G.; Park, H.J. J. Mater. Chem. A 2017, 5,13220.
[24]
Zhu, X.-D.; Ma, X.-J.; Wang, Y.-K.; Li, Y.; Gao, C.-H.; Wang, Z.-K.; Jiang, Z.-Q.; Liao, L.-S. Adv. Funct. Mater. 2018,1807094.
[25]
(a) Son, D.; Lee, J.; Choi, Y.; Jang, I.; Lee, S.; Yoo, P.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. Nat. Energy 2016, 1,16081.
[25]
(b) Li, X.; Zhang, W.; Wang, Y.-C.; Zhang, W.; Wang, H.-Q.; Fang, J. Nat. Commun. 2018, 9,3806.
[25]
(c) Noel, N.K.; Abate, A.; Stranks, S.D.; Parrott, E.S.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. ACS Nano 2014, 8,9815.
[26]
Xu, J.; Liang, L.; Mai, C.-L.; Zhang, Z.; Zhou, Q.; Xiong, Q.; Zhang, Z.; Deng, L.; Gao, P. Nanoscale 2020, 12,13157.
[27]
Gao, K.; Zhu, Z.; Xu, B.; Jo, S.B.; Kan, Y.; Peng, X.; Jen, A.K.-Y. Adv. Mater. 2017, 29,1703980.
[28]
Fang, L.; Zheng, A.; Ren, M.; Xie, X.; Wang, P. ACS Appl. Mater. Interfaces 2019, 11,39001.
[29]
Zhang, F.; Wang, Z.; Zhu, H.; Pellet, N.; Luo, J.; Yi, C.; Liu, X.; Liu, H.; Wang, S.; Li, X.; Xiao, Y.; Zakeeruddin, S.M.; Bi, D.; Gratzel, M. Nano Energy 2017, 41,469.
[30]
Petrus, M.L.; Schutt, K.; Sirtl, M.T.; Hutter, E.M.; Closs, A.C.; Ball, J.M.; Bijleveld, J.C.; Petrozza, A.; Bein, T.; Dingemans, T.J.; Savenije, T.J.; Snaith, H.; Docampo, P. Adv. Energy Mater. 2018, 8,1801605.
[31]
Hua, Y.; Chen, S.; Zhang, D.; Xu, P.; Sun, A.; Ou, Y.; Wu, T.; Sun, H.; Cui, B.; Zhu, X. J. Mater. Chem. A 2019, 7,10200.
[32]
Shen, C.; Wu, Y.; Zhang, H.; Li, E.; Zhang, W.; Xu, X.; Wu, W.; Tian, H.; Zhu, W.-H. Angew. Chem., Int. Ed. 2019, 58,3784.
[33]
Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Gratzel, M.; Seok, S.I. J. Am. Chem. Soc. 2013, 135,19087.
[34]
(a) Ge, Q.-Q.; Shao, J.-Y.; Ding, J.; Deng, L.-Y.; Zhou, W.-K.; Chen, Y.-X.; Ma, J.-Y.; Wan, L.-J.; Yao, J.; Hu, J.-S.; Zhong, Y.-W. Angew. Chem., Int. Ed. 2018, 57,10959.
[34]
(b) Wei, Q.; Ning, Z. Sci. China: Chem. 2019, 62,5.
[35]
Yin, X.; Zhou, J.; Song, Z.; Dong, Z.; Bao, Q.; Shrestha, N.; Bista, S.S.; Ellingson, R.J.; Yan, Y.; Tang, W. Adv. Funct. Mater. 2019,1904300.
[36]
Dong, Z.; Yin, X.; Ali, A.; Zhou, J.; Bista, S.S.; Chen, C.; Yan, Y.; Tang, W. J. Mater. Chem. C 2019, 7,9455.
[37]
Wang, J.; Zhang, H.; Wu, B.; Wang, Z.; Sun, Z.; Xue, S.; Wu, Y.; Hagfeldt, A.; Liang, M. Angew. Chem., Int. Ed. 2019, 58,15721.
[38]
Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Jia, X.; Zhu, Y.; Zhang, S.; Yuan, N.; Ding, J.; Li, Y. Sol. RRL 2020, 4,1900421.
[39]
Tu, B.; Wang, Y.; Chen, W.; Liu, B.; Feng, X.; Zhu, Y.; Yang, K.; Zhang, Z.; Shi, Y.; Guo, X.; Li, H.-F.; Tang, Z.; Djuris?ic?, A.B.; He, Z. ACS Appl. Mater. Interfaces 2019, 11,48556.
[40]
Chen, Y.; Xu, X.; Cai, N.; Qian, S.; Luo, R.; Huo, Y.; Tsang, S.-W. Adv. Energy Mater. 2019, 9,1901268.
[41]
Oh, S.; Khan, N.; Jin, S.-M.; Tran, H.; Yoon, N.; Song, C.E.; Lee, H.K.; Shin, W.S.; Lee, J.-C.; Moon, S.-J.; Lee, E.; Lee, S.K. Nano Energy 2020, 72,104708.
[42]
Rakstys, K.; Paek, S.; Gao, P.; Gratia, P.; Marszalek, T.; Grancini, G.; Cho, K.T.; Genevicius, K.; Jankauskas, V.; Pisula, W.; Nazeeruddin, M.K. J. Mater. Chem. A 2017, 5,7811.
[43]
Jiang, K.; Wang, J.; Wu, F.; Xue, Q.; Yao, Q.; Zhang, J.; Chen, Y.; Zhang, G.; Zhu, Z.; Yan, H.; Zhu, L.; Yip, H.-L. Adv. Mater. 2020,1908011.
[44]
Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Yuan, N.; Ding, J.; Li, Y. Adv. Funct. Mater. 2019, 29,1900484.
[45]
Chen, J.; Xia, J.; Gao, W.-J.; Yu, H.-J.; Zhong, J.-X.; Jia, C.; Qin, Y.-S.; She, Z.; Kuang, D.-B.; Shao, G. ACS Appl. Mater. Interfaces 2020, 12,21088.
[46]
Cui, B.-B.; Zhu, C.; Yang, S.; Han, Y.; Yang, N.; Zhang, L.; Wang, Y.; Jia, Y.; Zhao, L.; Chen, Q. ACS Omega 2018, 3,10791.
[47]
Shao, J.-Y.; Yang, N.; Guo, W.; Cui, B.-B.; Chen, Q.; Zhong, Y.-W. Chem. Commun. 2019, 55,13406.
[48]
Rakstys, K.; Paek, S.; Grancini, G.; Gao, P.; Jankauskas, V.; Asiri, A.M.; Nazeeruddin, M.K. ChemSusChem 2017, 10,3825.
[49]
Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112,1463.
[50]
Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. ACS Energy Lett. 2019, 4,2683.
[51]
Yu, W.; Yang, Q.; Zhang, J.; Tu, D.; Wang, X.; Liu, X.; Li, G.; Guo, X.; Li, C. ACS Appl. Mater. Interfaces 2019, 11,30065.
[52]
Ji, Y.; He, B.; Lu, H.; Xu, J.; Wang, R.; Jin, Y.; Zhong, C.; Shan, Y.; Wu, F.; Zhu, L. ChemSusChem 2019, 12,1374.
[53]
Ding, X.; Chen, C.; Sun, L.; Li, H.; Chen, H.; Su, J.; Li, H.; Li, H.; Xu, L.; Cheng, M. J. Mater. Chem. A 2019, 7,9510.
[54]
Ma, X.-J.; Zhu, X.-D.; Wang, K.-L.; Igbari, F.; Yuan, Y.; Zhang, Y.; Gao, C.-H.; Jiang, Z.-Q.; Wang, Z.-K.; Liao, L.-S. Nano Energy 2019, 63,1 03865.
[55]
Sun, X.; Wu, F.; Zhong, C.; Zhu, L.; Li, Z. Chem. Sci. 2019, 10,6899.
[56]
Vaitukaityte, D.; Wang, Z.; Malinauskas, T.; Magomedov, A.; Bubniene, G.; Jankauskas, V.; Getautis, V.; Snaith, H.J. Adv. Mater. 2018, 30,1803735.
[57]
Connell, A.; Wang, Z.; Lin, Y.-H.; Greenwood, P.C.; Wiles, A.A.; Jones, E.W.; Furnell, L.; Anthony, R.; Kershaw, C.P.; Cooke, G.; Snaith, H.J.; Holliman, P.J. J. Mater. Chem. C 2019, 7,5235.
Outlines

/