ARTICLES

Copper-Catalyzed Decarboxylative Cross-Coupling of Carboxylic Acids and Arylcarbamoyl Chlorides

  • Dun Zhou ,
  • Aihong Fan ,
  • Xiang Li ,
  • Chunxia Chen ,
  • Peng Sun ,
  • Jinsong Peng
Expand
  • 1 College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040
* Corresponding authors. E-mail: ;

Received date: 2020-07-30

  Revised date: 2020-10-20

  Online published: 2020-11-19

Supported by

Fundamental Research Funds for the Central Universities(2572019CG06); Fundamental Research Funds for the Central Universities(2572020DR07); Natural Science Foundation of Heilongjiang Province(LC2018003); Natural Science Foundation of Heilongjiang Province(B2017002); Programme of Introducing Talents of Discipline to Universities (111 Project)(B20088)

Abstract

A ligand-free copper-catalyzed decarboxylative cross-coupling reaction of carboxylic acids and carbamoyl chlorides in the absence of base was developed. With CuCl2 as the catalyst, the decarboxylative cross-coupling process could be realized in benzene at 120 ℃ in 48 h. Under the standard condition, the catalytic system had good functional group tolerance, and diverse amides were obtained in good to high yields. The structures of products were elucidated by 1H NMR, 13C NMR and HRMS spectra.

Cite this article

Dun Zhou , Aihong Fan , Xiang Li , Chunxia Chen , Peng Sun , Jinsong Peng . Copper-Catalyzed Decarboxylative Cross-Coupling of Carboxylic Acids and Arylcarbamoyl Chlorides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1146 -1152 . DOI: 10.6023/cjoc202007071

References

[1]
(a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
[1]
(b) de Figueiredo, R.M.; Suppo,, J.-S.; Campagne,, J.-M. Chem. Rev. 2016, 116, 12029.
[2]
Roy, S.; Roy, S.; Gribble, G. W. Tetrahedron 2012, 68, 9867.
[3]
Organotin reagents, see: (a) Balas, L.; Jousseaume, B.; Shin, H.; Verlhac, J.-B.; Wallian, F. Organometallics 1991, 10, 366.
[3]
(b) Jousseaume, B.; Kwon, H.; Verlhac, J.-B.; Denat, F.; Dubac, J. Synlett 1993,117.
[3]
(c) Murakami, M.; Hoshino, Y.; Ito, H.; Ito, Y. Chem. Lett. 1998,163.
[3]
(d) Hu, W.; Zheng, J.; Li, M.; Wu, W.; Liu, H.; Jiang, H. Chin. J. Chem. 2018, 36, 712.
[4]
Lemoucheux, L.; Rouden, J.; Lasne, M.-C. Tetrahedron Lett. 2000, 41, 9997.
[5]
Rieke, R. D.; Kim, S.-H. Tetrahedron Lett. 2012, 53, 3478.
[6]
Lysén, M.; Kelleher, S.; Begtrup, M.; Kristensen, J. L. J. Org. Chem. 2005, 70, 5342.
[7]
Duan, Y.-Z.; Deng, M.-Z. Synlett 2005,355.
[8]
Yasui, Y.; Tsuchida, S.; Miyabe, H.; Takemoto, Y. J. Org. Chem. 2007, 72, 5898.
[9]
Krishnamoorthy, R.; Lam, S. Q.; Manley, C. M.; Herr, R. J. J. Org. Chem. 2010, 75, 1251.
[10]
Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792.
[11]
(a) Matsuzono, M.; Fukuda, T.; Iwao, M. Tetrahedron Lett. 2001, 42, 7621.
[11]
(b) Chao, W.-R.; Yean, D.; Amin, K.; Green, C.; Jong, L. J. Med. Chem. 2007, 50, 3412.
[12]
Lemoucheux, L.; Seitz, T.; Rouden, J.; Lasne, M.-C. Org. Lett. 2004, 6, 3703.
[13]
Selected reviews, see: (a) Baudoin, O. Angew. Chem., Int. Ed. 2007, 46, 1373.
[13]
(b) Gooβen, L. J.; Rodriguez, N.; Gooβen, K. Angew. Chem.. Int. Ed. 2008, 47, 3100.
[13]
(c) Rodríguez, N.; Gooβen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[13]
(d) Dzik, W. I.; Lange, P. P.; Gooβen, L. J. Chem. Sci. 2012, 3, 2671.
[13]
(e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
[14]
Selected examples, see: (a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.
[14]
(b) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
[15]
Goo?en, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
[16]
(a) Goo?en, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm, A. Chem. Commun. 2009,7173.
[16]
(b) Cornella, J.; Sanchez, C.; Banawa, D.; Larrosa, I. Chem. Commun. 2009,7176.
[17]
(a) Cornella, J.; Rosillo-Lopez, M.; Larrosa, I. Adv. Synth. Catal. 2011, 353, 1359.
[17]
(b) Dupuy, S.; Lazreg, F.; Slawin, A. M. Z.; Cazin, C. S. J.; Nolan, S. P. Chem. Commun. 2011, 47, 5455.
[18]
Sun, Z.-M.; Zhao, P. Angew. Chem., Int. Ed. 2009, 48, 6726.
[19]
Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350.
[20]
(a) Jiao, J.; Zhang, X.-R.; Chang, N.-H.; Wang, J.; Wei, J.-F.; Shi, X.-Y.; Chen, Z.-G. J. Org. Chem. 2011, 76, 1180.
[20]
(b) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 9602.
[21]
Yamasaki, R.; Morita, K.; Iizumi, H.; Ito, A.; Fukuda, K.; Okamoto, I. Chem.-Eur. J. 2019, 25, 10118.
[22]
Allah, T. N.; ne Savourey, S.; Berthet, J.-C.; Nicolas, E.; Cantat, T. Angew. Chem., Int. Ed. 2019, 58, 10884.
[23]
Song, G.; Sun, G.; Tang, Y.; Mai, W. J. Chem. Res. 2013,630.
[24]
Zhou, Y.; Zhang, X.; Zhang, Y.; Ruan, L.; Zhang, J.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2017, 19, 150.
[25]
Zhang, Z.; Liu, Y.-H.; Zhang, X.; Wang, X.-C. Tetrahedron 2019, 75, 2763.
[26]
Bao, Y.-S.; Zhaorigetu, B.; Agula, B.; Baiyin, M.; Jia, M. J. Org. Chem. 2014, 79, 803.
[27]
Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett. 2009, 11, 4274.
[28]
Das, K. G.; Funke, P. T.; Bose, A. K. J. Am. Chem. Soc. 1964, 86, 3729.
Outlines

/