ARTICLES

High Efficient Synthesis of Monofluoromethyldisulfides

  • Xiaoguang Hu ,
  • Renyi Pang ,
  • Tianjiao Zheng ,
  • Ruichao Yao ,
  • Wenbo Chen
Expand
  • a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090
    b CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
* Corresponding author. E-mail:

Received date: 2020-09-01

  Revised date: 2020-11-02

  Online published: 2020-12-01

Supported by

Natural Science Foundation of Shanghai(20ZR1471600); Science and Technology Commission of Shanghai Municipality(19DZ2271100); Open Research Fund Program of CAS Key Laboratory Of Energy Regulation Materials(ORFP2020-06)

Abstract

The monofluoromethylthiolation reaction of thiophenols/mercaptans was developed at room temperature using PhSO2SCH2F as monofluoromethylthiolation reagent, and a series of monofluoromethyl disulfides were synthesized in good yields. This method features short reaction time, mild conditions, simple operation and no additives. It provides a simple and convenient way for the efficient preparation of monofluoromethyl disulfides.

Cite this article

Xiaoguang Hu , Renyi Pang , Tianjiao Zheng , Ruichao Yao , Wenbo Chen . High Efficient Synthesis of Monofluoromethyldisulfides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1117 -1123 . DOI: 10.6023/cjoc202009001

References

[1]
(a) Zhang, P. P.; Lu, L.; Shen, Q. L. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
[1]
(张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
[1]
(b) Geng, Y.; Liang, A. P.; Gao, X. Y.; Niu, C. S.; Li, J. Y.; Zou, D.P; Wu, Y. S.; Wu, Y. J. J. Org. Chem. 2017, 82, 8604.
[2]
(a) Yang, X. Y.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
[2]
(b) Yan, Q.; Jiang, L. P.; Yi, W. B. Chin. J. Org. Chem. 2020, 40, 1. (in Chinese)
[2]
(闫强, 蒋绿齐, 易文斌, 有机化学, 2020, 40, 1.)
[3]
(a) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827.
[3]
(b) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
[3]
(c) He, W. M.; Weng, Z. Q. Prog. Chem. 2013, 25, 1071. (in Chinese)
[3]
(何伟明, 翁志强, 化学进展, 2013, 25, 1071.)
[3]
(d) Wang, Z.; Tu, Q.; Weng, Z. J. Organomet. Chem. 2014, 751, 830.
[3]
(e) Nikolaienko, P.; Pluta, R.; Rueping, M. Chem.-Eur. J. 2014, 20, 9867.
[3]
(f) Li, S. S.; Wang, J. B. Acta Chim. Sinica 2018, 76, 913. (in Chinese) 2d961da2-63cb-468b-901e-8be1ecb27261
[3]
(李树森, 王剑波, 化学学报, 2018, 76, 913.) 2d961da2-63cb-468b-901e-8be1ecb27261
[3]
(g) Yang, Y. D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.
[3]
(h) Shao, X. X.; Wang, X. Q.; Yang, T.; Lu, L.; Shen, Q. L. Angew. Chem.. Int. Ed. 2013, 52, 1.
[3]
(i) Zhu, D. H.; Shao, X. X.; Hong, X.; Lu, L.; Shen, Q. L. Angew. Chem.. Int. Ed. 2016, 55, 15807.
[4]
(a) Zhao, X.; Li, T. J.; Yang, B.; Qiu., D.; Lu, K. Tetrahedron 2017, 73, 3112.
[4]
(b) Ismalaj, E.; Billard, T. J. Fluorine Chem. 2017, 203, 215.
[4]
(c) Xu, B.; Wang, D. C.; Hu, Y. H.; Shen, Q. L. Org. Chem. Front. 2018, 5, 1462.
[5]
(a) Howland, W. C. Clin. Exp Allergy 1996, 26, 18.
[5]
(b) Zhou, J.; Jin, C.; Su, W. Org. Process Res. Dev. 2014, 18, 928.
[6]
Ashton, M. J.; Lawrence, C.; Karlsson, J. A.; Stuttle, K. A. J.; Newton, C. G.; Vacher, B. Y. J.; Webber, S.; Withnall, M. J. J. Med. Chem. 1996, 39, 4888.
[7]
Jung, M.; Wahl, A. F.; Neupert, W.; Geisslinger, G.; Senter, P. D. Pharm. Pharmacol. Commun. 2000, 6, 217.
[8]
(a) Zhao, Q. C.; Lu, L.; Shen, Q. L. Angew. Chem. 2017, 129, 11733.
[8]
(b) Liu, F. M.; Jiang, L. Q.; Qiu, H. Y.; Yi, W. B. Org. Lett. 2018, 20, 6270.
[9]
(a) Guo, S. H.; Wang, M. Y.; Pan, G. F.; Zhu, X. Q.; Gao, Y. R.; Wang, Y. Q. Adv. Synth. Catal. 2018, 360, 1861.
[9]
(b) Xu, B.; Li, D. Z.; Lu, L.; Wang, D. C.; Hu, Y. H.; Shen, Q. L. Org. Chem. Front. 2018, 5, 2163.
[10]
Pang, R. Y.; Yao, R. C.; Lu, S. Y.; Zhou, Y. C.; Chen, W. B. Chin. Chem. Lett. 2021, 32, 453.
[11]
Wang, W. G.; Lin, Y. Z.; Ma, Y. D.; Tung, C. H.; Xu, Z. H. Org. Lett. 2018, 20, 3829.
[12]
(a) Cheng, Z.; Zhang, J.; Ballou, D. P.; Williams, C. H. , Jr. Chem. Rev. 2011, 111, 5768.
[12]
(b) Block, E.; Bayer, T.; Naganathan, S.; Zhao, S. H. J. Am. Chem. Soc. 1996, 118, 2799.
[12]
(c) Chankhamjon, P.; Boettger-Schmidt, D.; Scherlach, K.; Urbansky, B.; Lackner, G.; Kalb, D.; Dahse, H.-M.; Hoffmeister, D.; Hertweck, C. Angew. Chem.. Int. Ed. 2014, 53, 13409.
[12]
(d) Xiao, X.; Xue, J.; Jiang, X. Nat. Commun. 2018, 9, 2191.
[13]
(a) Sonia, T. V.; Erben, M. F.; Boese, R.; Vedova, C. O. New J. Chem. 2010, 34, 1365.
[13]
(b) Pluta, R.; Rueping, M. Chem.-Eur. J. 2014, 20, 17315.
[13]
(c) Glenadel, Q.; Billard, T. Chin. J. Chem. 2016, 34, 455.
[14]
(a) Xu, C.; Ma, B.; Shen, Q. L. Angew. Chem.. Int. Ed. 2014, 53, 9316.
[14]
(b) Zhu, D. H.; Gu, Y.; Lu, L.; Shen, Q. L. J. Am. Chem. Soc. 2015, 137, 10547.
[15]
Huang, P. F.; Wang, P.; Tang, S.; Fu, Z. J.; Lei, A. W. Angew. Chem. 2018, 130, 8247.
Outlines

/