Chinese Journal of Organic Chemistry >
Perfluoroalkyl Halides as Fluorine-Containing Building Blocks for the Synthesis of Fluoroalkylated Heterocycles
Received date: 2020-09-15
Revised date: 2020-11-12
Online published: 2020-12-01
Supported by
Financial Support from Nanjing Tech University(39837146); National Natural Science Foundation of China(22001121); National Natural Science Foundation of Jiangsu Province(BK20180690)
The unique chemical and physical advantages conferred by incorporation of F-atoms/perfluoroalkyl groups (Rf) into organic compounds have gained widespread recognition throughout drug discovery, crop protection, polymer chemistry, and materials science. The past decades have witnessed a boom in organofluorine chemistry and heterocyclic chemistry mainly owing to the importance of fluorine-containing heterocycles. As a result, the exploitation of readily available fluorinated building blocks to attach Rf groups to various heterocycles has become an important topic in synthetic chemistry. On the other hand, perfluoroalkyl halide, as a low-toxic and environmentally friendly perfluoroalkyl building block, has been extensively utilized as a unique reagent in the heterocycle construction. Considering the great influence and synthetic potential of these novel avenues, we summarize the recent advances for the synthesis of fluoroalkylated heterocycles by using perfluoroalkyl halides as key fluorine-containing building blocks. One or three C—X bonds of perfluoroalkyl halides are cleaved/functiona- lized during the perfluoroalkylation and cyclization process, and a series of perfluoroalkylated heterocycles such as quinoxalines, phenanthridines, hydrazones, thiazoles, pyrimidines, aza-tricycles, isoxazoles,etc. were synthesized in moderate to good yields. With a specific emphasis on their proposed mechanism, we hope this review will be useful for medicinal and synthetic organic chemists who are interested in radical-mediated perfluoroalkylation.
Buqing Cheng , Danhua Ge , Xin Wang , Xueqiang Chu . Perfluoroalkyl Halides as Fluorine-Containing Building Blocks for the Synthesis of Fluoroalkylated Heterocycles[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1925 -1938 . DOI: 10.6023/cjoc202009035
[1] | (a) Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432. |
[1] | (b) Prchalová, E.; ?těpánek, O.; Smr?ek, S.; Kotora, M. Future Med. Chem., 2014, 6, 1201. |
[1] | (c) Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. iScience 2020, 23, 101467. |
[2] | For selected reviews, see: (a) Ni C.; Hu M.; Hu J. Chem. Rev. 2015, 115, 765. |
[2] | (b) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441. |
[3] | For selected examples, see: (a) Shao X.-X.; Xu C.-F.; Lu L.; Shen Q. Acc. Chem. Res. 2015, 48, 1227. |
[3] | (b) Li, S.; Ma, J.-A. Chem. Soc. Rev. 2015, 44, 7439. |
[3] | (c) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51, 2264. |
[3] | (d) Huang, W.; Hu, M.; Wan, X.; Shen, Q. Nat. Commun. 2019, 10, 2963. |
[3] | (e) Fu, X.-P.; Xue, X.-S.; Zhang, X.-Y.; Xiao, Y.-L.; Zhang, S.; Guo, Y.-L.; Leng, X.; Houk, K. N.; Zhang, X. Nat. Chem. 2019, 11, 948. |
[4] | For selected reviews, see: (a) Hu J; Ding K Acta Chim. Sinica 2018, 76, 905. (in Chinese). |
[4] | (胡金波, 丁奎岭, 化学学报, 2018, 76, 905.) |
[4] | (b) Ren, Z.; Ren, N.; Zhang, F.; Ma, J. Acta Chim. Sinica 2018, 76, 940. (in Chinese). |
[4] | (任智雯, 任楠, 张发光, 马军安, 化学学报, 2018, 76, 940.) |
[4] | (c) Liu, Q.; Zhao, X.; Li, J.; Cao, S. Acta Chim. Sinica 2018, 76, 945. (in Chinese). |
[4] | (刘青云, 赵祥虎, 李佳录, 曹松, 化学学报, 2018, 76, 945.) |
[5] | For selected reviews, see: (a) Ni C.; Hu J. Chem. Soc. Rev. 2016, 45, 5441. |
[5] | (b) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163. |
[5] | (c) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Green Chem. 2018, 20, 1662. |
[5] | (d) Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. ACS Catal. 2018, 8, 258. |
[6] | For selected reviews, see: (a) Koike T.; Akita M. Chem 2018, 4, 409. |
[6] | (b) Barata-Vallejo, S.; Cooke, M. V.; Postigo, A. ACS Catal. 2018, 8, 7287. |
[7] | Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638. |
[8] | Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442. |
[9] | Yu, J.-M.; Cai, C. Eur. J. Org. Chem. 2017,6008. |
[10] | Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790. |
[11] | Xia, X.-F.; Yu, J.; Wang, D. Adv. Synth. Catal. 2018, 360, 562. |
[12] | Liu, Y.; Chen, X.-L.; Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 4019. |
[13] | Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154. |
[14] | Zhang, H.; Mou, X.; Chen, G.; He, G. Acta Chim. Sinica 2019, 77, 884. (in Chinese). |
[14] | (张衡, 牟学清, 陈弓, 何刚, 化学学报, 2019, 77, 884.) |
[15] | Li, D.; Wang, Y.; Jia, Z.; Ou, Z.; Dong, Y.; Lv, C.; Fu, G.; Liang, D. Eur. J. Org. Chem. 2019,4797. |
[16] | Xiong, H.; Ramkumar, N.; Chiou, M.-F.; Jian, W.; Li, Y.; Su, J.-H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 122. |
[17] | Wang, R.; Guan, W.; Han, Z.-B.; Liang, F.; Suga, T.; Bi, X.; Nishide, H. Org. Lett. 2017, 19, 2358. |
[18] | Fu, Q.; Wang, R.; Liang, F.; Guan, W. Org. Biomol. Chem. 2018, 16, 8950. |
[19] | Chu, X.-Q.; Cheng, B.-Q.; Zhang, Y.-W.; Ge, D.; Shen, Z.-L.; Loh, T.-P. Chem. Commun. 2018, 54, 2615. |
[20] | Chu, X.-Q.; Xie, T.; Li, L.; Ge, D.; Shen, Z.-L.; Loh, T.-P. Org. Lett. 2018, 20, 2749. |
[21] | Chu, X.-Q. Ge, D.; Wang, M.-L.; Rao, W.; Loh, T.-P.; Shen, Z.-L. Adv. Synth. Catal. 2019, 361, 4082. |
[22] | Wang, R.; Wang, L.; Xu, Q.; Ren, B.-Y.; Liang, F. Org. Lett. 2019, 21, 3072. |
Chen, Y.; Li, L.; He, X.; Li, Z. ACS Catal. 2019, 9, 9098. |
/
〈 |
|
〉 |