REVIEWS

Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds

  • Hao Wang ,
  • Ping Ying ,
  • Jingbo Yu ,
  • Weike Su
Expand
  • a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Hangzhou 310014
    b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014
* Corresponding author. E-mail:

Received date: 2020-09-27

  Revised date: 2020-11-14

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China(21978270); National Natural Science Foundation of China(21406201)

Abstract

Cross-dehydrogenative coupling (CDC) reactions have been esteemed as one of the straightforward and efficient tool for C—C bond formation. Typically, these reactions are generally realized via solvent-based thermochemistry, using a round bottom flask and a magnetic or mechanical stirrer. With the development of new synthetic strategies, alternative technologies currently available in laboratories that facilitate CDC reactions, such as photochemistry, electrochemistry and mechanochemistry have arisen rapidly, providing green and high efficiency strategies for the construction of C—C bonds which are perfect complement to traditional thermochemistry. In order to compare the advantages of each approaches more clearly, and promote the development of CDC reactions, CDC reactions related to two or more enabling technologies of same or similar substrates are reviewed, hoping to provide help for the development of CDC reaction and the development of new organic synthesis methods.

Cite this article

Hao Wang , Ping Ying , Jingbo Yu , Weike Su . Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1897 -1924 . DOI: 10.6023/cjoc202009053

References

[1]
Li, C.-J.; Li, Z. P. Pure Appl. Chem. 2006, 78, 935.
[2]
Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[3]
Guo, X. W.; Li, Z. P.; Li, C. J. Prog. Chem. 2010, 22, 1434. (in Chinese).
[3]
(郭兴伟, 李志平, 李朝军, 化学进展, 2010, 22, 1434.)
[4]
Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
[5]
Huang, C.-Y.; Kang, H.; Li, J.; Li, C.-J. J. Org. Chem. 2019, 84, 12705.
[6]
Zhang, Y.; Feng, B. N. Chin. J. Org. Chem. 2014, 34, 2406. (in Chinese).
[6]
(张艳, 冯柏年, 有机化学, 2014, 34, 2406.)
[7]
Phillips, A. M. F.; Pombeiro, A. J. L. ChemCatChem 2018, 10, 3354.
[8]
Parvatkar, P. T.; Manetsch, R.; Banik, B. K. Chem.-Asian J. 2019, 14, 6.
[9]
Lei, A. Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Springer, Berlin,2019.
[10]
Scheuermann, C. J. Chem.-Asian J. 2010, 5, 436.
[11]
Varun, B. V.; Dhineshkumar, J.; Bettadapur, K. R.; Siddaraju, Y.; Alagiri, K.; Prabhu, K. R. Tetrahedron Lett. 2017, 58, 803.
[12]
Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K. P.; Qin, H.-L. Adv. Synth. Catal. 2018, 360, 4652.
[13]
Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
[14]
Jiang, C.; Chen, W.; Zheng, W.-H.; Lu, H. Org. Biomol. Chem. 2019, 17, 8673.
[15]
Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769.
[16]
Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
[17]
(a) Dong, K.; Liu, Q.; Wu, L.-Z. Acta Chim. Sinica 2020, 78, 299. (in Chinese).
[17]
(董奎, 刘强, 吴骊珠, 化学学报, 2020, 78, 299.)
[17]
(b) Kong, Y. L.; Xu, W. X.; Ye, F. X.; Weng, J. Q. Chin. J. Org. Chem. 2019, 39, 3065. (in Chinese).
[17]
(孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
[17]
(c) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem. 2018, 38, 2590. (in Chinese).
[17]
(吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)
[17]
(d) Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34. (in Chinese).
[17]
(钟建基, 孟庆元, 陈斌, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
[18]
Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[19]
Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Adv. Synth. Catal. 2007, 349, 2213.
[20]
Lou, S.-J.; Mao, Y.-J.; Xu, D.-Q.; He, J.-Q.; Chen, Q.; Xu, Z.-Y. ACS Catal. 2016, 6, 3890.
[21]
Hernandez, J. G.; Bolm, C. J. Org. Chem. 2017, 82, 4007.
[22]
Egorov, I. N.; Santra, S.; Kopchuk, D. S.; Kovalev, I. S.; Zyryanov, G. V.; Majee, A.; Ranu, B. C.; Rusinov, V. L.; Chupakhin, O. N. Green Chem. 2020, 22, 302.
[23]
Friscic, T.; Mottillo, C.; Titi, H. M. Angew. Chem., Int. Ed. 2020, 59, 1018.
[24]
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.
[25]
Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang, H.-H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2012, 14, 5992.
[26]
Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.
[27]
Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem.-Eur. J. 2012, 18, 620.
[28]
Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. ChemSusChem 2017, 10, 664.
[29]
Quan, Y.; Li, Q.-Y.; Zhang, Q.; Zhang, W.-Q.; Lu, H.; Yu, J.-H.; Chen, J.; Zhao, X.; Wang, X.-J. RSC Adv. 2016, 6, 23995.
[30]
Su, W. K.; Yu, J.; Li, Z.; Jiang, Z. J. Org. Chem. 2011, 76, 9144.
[31]
Sud, A.; Sureshkumar, D.; Klussmann, M. Chem. Commun. 2009,3169.
[32]
Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
[33]
Zhang, J.; Tiwari, B.; Xing, C.; Chen, X.; Chi, Y. B. Angew. Chem., Int. Ed. 2012, 51, 3649.
[34]
Xie, Z.; Zan, X.; Sun, S.; Pan, X.; Liu, L. Org. Lett. 2016, 18, 3944.
[35]
Zhang, G.; Ma, Y.; Wang, S.; Kong, W.; Wang, R. Chem. Sci. 2013, 4, 2645.
[36]
Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
[37]
Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
[38]
Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005, 2005, 3173.
[39]
Zhang, Y.; Li, C.-J. Angew. Chem., Int. Ed. 2006, 45, 1949.
[40]
Li, F.; Meng, Z.; Hua, J.; Li, W.; Lou, H.; Liu, L. Org. Biomol. Chem. 2015, 13, 5710.
[41]
Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem.-Eur. J. 2015, 21, 18080.
[42]
Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 10429.
[43]
Gao, X.-W.; Meng, Q.-Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Adv. Synth. Catal. 2013, 355, 2158.
[44]
Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.
[45]
Guo, C.; Song, J.; Luo, S.-W.; Gong, L.-Z. Angew. Chem., Int. Ed. 2010, 49, 5558.
[46]
Yu, J.; Ying, P.; Wang, H.; Xiang, K.; Su, W. Adv. Synth. Catal. 2020, 362, 893.
[47]
Shan, N.; Toda, F.; Jones, W. Chem. Commun. 2002,2372.
[48]
Yu, J.-B.; Zhang, Y.; Jiang, Z.-J.; Su, W.-K. J. Org. Chem. 2016, 81, 11514.
[49]
Benfatti, F.; Capdevila, M. G.; Zoli, L.; Benedetto, E.; Cozzi, P. G. Chem. Commun. 2009,5919.
[50]
Ho, X.-H.; Mho, S.-I.; Kang, H.; Jang, H.-Y. Eur. J. Org. Chem. 2010, 2010, 4436.
[51]
Larionov, E.; Mastandrea, M. M.; Pericas, M. A. ACS Catal. 2017, 7, 7008.
[52]
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.
[53]
Alagiri, K.; Kumara, G. S. R.; Prabhu, R. Chem. Commun. 2011, 47, 11787.
[54]
Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.
[55]
Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.
[56]
Zhong, J.-J.; Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Tung, C.-H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.
[57]
Wu, C.-J.; Zhong, J.-J.; Meng, Q.-Y.; Lei, T.; Gao, X.-W.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2015, 17, 884.
[58]
Yang, Q.; Li, S.; Wang, J. Org. Chem. Front. 2018, 5, 577.
[59]
Kibriya, G.; Bagdi, A. K.; Hajra, A. J. Org. Chem. 2018, 83, 10619.
[60]
Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
[61]
Wu, J.-C.; Song, R.-J.; Wang, Z.-Q.; Huang, X.-C.; Xie, Y.-X.; Li, J.-H. Angew. Chem. 2012, 124, 3509.
[62]
Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Adv. Synth. Catal. 2014, 356, 411.
[63]
Zhang, Y.; Ni, M.; Feng, B. Org. Biomol. Chem. 2016, 14, 1550.
[64]
Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem., Int. Ed. 2014, 53, 13544.
[65]
Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Adv. Synth. Catal. 2013, 355, 1911.
[66]
Zhu, S.; Rueping, M. Chem. Commun. 2012, 48, 11960.
[67]
Wang, Z.-Q.; Hu, M.; Huang, X.-C.; Gong, L.-B.; Xie, Y.-X. Li, J.-H. J. Org. Chem. 2012, 77, 8705.
[68]
Ni, C.; Chen, W.; Jiang, C.; Lu, H. New J. Chem. 2020, 44, 313.
[69]
Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942.
[70]
Shen, M.-L.; Shen, Y.; Wang, P.-S. Org. Lett. 2019, 21, 2993.
[71]
Xu, Z.; Yu, X.; Feng, X.; Bao, M. Beilstein J. Org. Chem. 2012, 8, 1564.
[72]
Salman, M.; Zhu, Z.-Q.; Huang, Z.-Z. Org. Lett. 2016, 18, 1526.
[73]
Li, S.; Yang, X.; Wang, Y.; Zhou, H.; Zhang, B.; Huang, G.; Zhang, Y.; Li, Y. Adv. Synth. Catal. 2018, 360, 4452.
[74]
Zhang, Y.; Li, S.; Zhu, Y.; Yang, X.; Zhou, H.; Li, Y. J. Org. Chem. 2020, 85, 6261.
[75]
Enguehard-Gueiffier, C.; Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888.
[76]
Jiao, J.; Zhang, J.-R.; Liao, Y.-Y.; Xu, L.; Hu, M.; Tang, R.-Y. RSC Adv. 2017, 7, 30152.
[77]
Zhu, Z.-Q.; Xiao, L.-J.; Zhou, C.-C.; Song, H.-L.; Xie, Z.-B.; Le, Z.-G. Tetrahedron Lett. 2018, 59, 3326.
[78]
Ramana, D. V.; Chowhan, L. R.; Chandrasekharam, M. ChemistrySelect 2017, 2, 2241.
[79]
Sun, B.; Deng, J.; Li, D.; Jin, C.; Su, W. Tetrahedron Lett. 2018, 59, 4364.
[80]
He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
[81]
Xie, Z.; Cai, Y; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15, 4600.
[82]
Li, Y.; Wang, M.; Fan, W.; Qian, F.; Li, G.; Lu, H. J. Org. Chem. 2016, 81, 11743.
[83]
Dong, J.; Xia, Q.; Lv, X.; Yan, C.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2018, 20, 5661.
[84]
Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2019, 84, 4543.
[85]
Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688.
[86]
Yuan, J.; Fu, J.; Yin, J.; Dong, Z.; Xiao, Y.; Mao, P.; Qu, L. Org. Chem. Front. 2018, 5, 2820.
[87]
Wei, W.; Wang, L.; Yue, H.; Bao, P.; Liu, W.; Hu, C.; Yang, D.; Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252.
[88]
Mane, K. D.; Kamble, R. B.; Suryavanshi, G. New J. Chem. 2019, 43, 7403.
[89]
Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997.
[90]
Sun, S.; Li, C.; Floreancig, P. E.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 1684.
[91]
Marset, X.; Perez J. M.; Ramon, D. J. Green Chem. 2016, 18, 826.
[92]
Huang, T.; Liu, X.; Lang, J.; Xu, J.; Li, L.; Feng, X. ACS Catal. 2017, 7, 5654.
[93]
Yu, J.; Li, Z.; Jia, K.; Jiang, Z.; Liu, M.; Su, W. Tetrahedron Lett. 2013, 54, 2006.
[94]
Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 447.
[95]
Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.
[96]
More, N. Y.; Jeganmohan, M. Org. Lett. 2015, 17, 3042.
[97]
Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y. Angew. Chem., Int. Ed. 2016, 55, 3652.
[98]
Dohi, T.; Kamitanaka, T.; Watanabe, S.; Hu, Y.; Washimi, N.; Kita, Y. Chem.-Eur. J. 2012, 18, 13614.
[99]
Morimoto, K.; Sakamoto, K.; Ohnishi, Y.; Miyamoto, T.; Ito, M.; Dohi, T.; Kita, Y. Chem.-Eur. J. 2013, 19, 8726.
[100]
Dohi, T.; Ito, M.; Itani, I.; Yamaoka, N.; Morimoto, K.; Fujioka, H.; Kita, Y. Org. Lett. 2011, 13, 6208.
[101]
Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.
[102]
Kirste, A.; Schnakenburg, G.; Waldvogel, S. R. Org. Lett. 2011, 13, 3126.
[103]
Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 134, 3571.
[104]
Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.
[105]
Wiebe, A.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 11801.
[106]
Rockl, J. L.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2020, 59, 315.
[107]
Eisenhofer, A.; Hioe, J.; Gschwind, R. M.; K?nig, B. Eur. J. Org. Chem. 2017, 2017, 2194.
[108]
Matsumoto, K.; Yoshida, M.; Shindo, M. Angew. Chem., Int. Ed. 2016, 55, 5272.
[109]
Matsumoto, K.; Takeda, S.; Hirokane, T.; Yoshida, M. Org. Lett. 2019, 21, 7279.
[110]
Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 4877.
[111]
Schulz, L.; Franke, R.; Waldvogel, S. R. ChemElectroChem 2018, 5, 2069.
[112]
Luo, M.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Chem. Commun. 2020, 56, 2707.
[113]
Chandrasekharam, M.; Chiranjeevi, B.; Gupta, K. S. V.; Sridhar, B. J. Org. Chem. 2011, 76, 10229.
[114]
Akondi, A. M.; Trivedi, R.; Sreedhar, B.; Kantam, M. L.; Bhargava, S. Catal. Today 2012, 198, 35.
[115]
Wang, J.; Zhao, Y.; Gao, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2017, 6, 1402.
[116]
Dahms, B.; Franke, R.; Waldvogel, S. R. ChemElectroChem 2018, 5, 1249.
[117]
Guan, Z.-H.; Yan, Z.-Y.; Ren, Z.-H.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2010, 46, 2823.
[118]
Wurtz, S.; Rakshit, S.; Neumann, J, J.; Droge, T.; Glorius, F. Angew. Chem., Int. Ed. 2008, 47, 7230.
[119]
Bernini, R.; Fabrizi, G.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48, 8078.
[120]
Neumann, J. J.; Rakshit, S.; Droge, T.; Wurtz, S.; Glorius, F. Chem.-Eur. J. 2011, 17, 7298.
[121]
He, Z.; Liu, W.; Li, Z. Chem.-Asian J. 2011, 6, 1340.
[122]
Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. Eur. J. Org. Chem. 2013, 2013, 858.
[123]
Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.
[124]
Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326.
[125]
Wu, C.-J. Meng, Q.-Y.; Lei, T.; Zhong, J.-J.; Liu, W.-Q.; Zhao, L.-M.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2016, 6, 4635.
[126]
Tang, S.; Gao, X.; Lei, A. Chem. Commun. 2017, 53, 3354.
[127]
Reux, B.; Nevalainen, T.; Raitio, K. H.; Koskinen, A. M. P. Bioorg. Med. Chem. 2009, 17, 4441.
[128]
Costa, E. V.; Pinheiro, M. L. B.; Barison, A.; Campos, F. R.; Salvador, M. J.; Maia, B. H. L. N. S.; Cabral, E. C.; Eberlin, M. N.; J. Nat. Prod. 2010, 73, 1180.
[129]
Nishikawa-Shimono, R.; Sekiguchi, Y.; Koami, T.; Kawamura, M.; Wakasugi, D.; Watanabe, K.; Wakahara, S.; Kimura, K.; Yamanobe S.; Takayama, T. Bioorg. Med. Chem. 2013, 21, 7674.
[130]
Gao, F.; Liu, H.; Li, L.; Guo, J.; Wang, Y.; Zhao M.; Peng, S. Bioorg. Med. Chem. Lett. 2015, 25, 4434.
[131]
Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 2082.
[132]
Chen, J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. Org. Biomol. Chem. 2015, 13, 11561.
[133]
Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun. 2018, 54, 5744.
[134]
Obst, M.; K?nig, B. Beilstein J. Org. Chem. 2016, 12, 2358.
[135]
Hernandez, J. G. Beilstein J. Org. Chem. 2017, 13, 1463.
[136]
Toda, F.; Tanaka, K.; Sekikawa, A. Chem. Commun. 1987,279.
[137]
Sokolov, A. N.; Bucar, D.-K.; Baltrusaitis, J.; Gu, S.X. MacGillivray, L. R. Angew. Chem., Int. Ed. 2010, 49, 4273.
[138]
Stojakovic, J.; Farris, B. S.; MacGillivray, L. R. Faraday Discuss. 2014, 170, 35.
[139]
Strukil, V.; Sajko, I. Chem. Commun. 2017, 53, 9101.
[140]
Obst, M. K?nig, B. Eur. J. Org. Chem. 2018, 2018, 4213.
[141]
Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Science 2019, 366, 1500.
Outlines

/