REVIEWS

Recent Progress in the Application of Difluoromethyl Diazomethane as Fluorine-Containing Building Block

  • Wenqing Zhu ,
  • Tingyi Xu ,
  • Wenyong Han
Expand
  • a School of Environmental and Chemical Engineering, Xi?an Polytechnic University, Xi?an 710048
    b Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006
    c Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006
* Corresponding authors. E-mail: ;

Received date: 2020-09-28

  Revised date: 2020-11-02

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China(21762054); Outstanding Youth Talent Support Programs from Zunyi Medical University(18ZY-002)

Abstract

Difluoromethylation has achieved remarkable progress in the past two decades. In addition to the direct difluoromethylation and the stepwise difluoromethylation, chemical transformation starting from CF2H-containing building blocks is a novel strategy to introduce difluoromethyl group into organic compounds. Compared with electrophilic-, nucleo- philic- and free radical-difluoromethylation reagents, the types of CF2H-containing building blocks are still limited and less explored. Among them, difluoromethyl diazomethane (CF2HCHN2) is a new type of fluorine-containing building block developed in recent years, which has received much attention from researchers. The recent progress in the application of difluoromethyl diazomethane and its surrogates as fluorine-containing building blocks is summarized, focusing on the reaction types and related mechanisms, and the developmental direction in the future is prospected.

Cite this article

Wenqing Zhu , Tingyi Xu , Wenyong Han . Recent Progress in the Application of Difluoromethyl Diazomethane as Fluorine-Containing Building Block[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1275 -1287 . DOI: 10.6023/cjoc202009055

References

[1]
(a) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Im-perial College Press, London, 2012.
[1]
(b) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34,662. (in Chinese)
[1]
( 张霁, 金传飞, 张英俊, 有机化学, 2014, 34,662.)
[1]
(c) Xing, L.; Blakemore, D.C.; Narayanan, A.; Unwalla, R.; Lovering, F.; Denny, R.A.; Zhou, H.; Bunnage, M.E. ChemMedChem 2015, 10,715.
[1]
(d) Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Chem.-Eur. J. 2019, 25,11797.
[2]
(a) Meanwell, N.A. J. Med. Chem. 2011, 54,2529.
[2]
(b) Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. J. Med. Chem. 2019, 62,5628.
[3]
(a) Mori, T.; Ujihara, K.; Matsumoto, O.; Yanagi, K.; Matsuo, N. J. Fluorine Chem. 2007, 128,1174.
[3]
(b) Thappali, S.R.; Varanasi, K.V.; Veeraraghavan, S.; Vakkalanka, S.K.; Mukkanti, K. J. Mass Spectrom. 2012, 47,1612.
[3]
(c) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F.R. J. Fluorine Chem. 2013, 152,2.
[3]
(d) Rodriguez-Torres, M.; Glass, S.; Hill, J.; Freilich, B.; Hassman, D.; Di Bisceglie, A.M.; Taylor, J.G.; Kirby, B.J.; Dvory-Sobol, H.; Yang, J.-C.; An, D.; Stamm, L.M.; Brainard, D.M.; Kim, S.; Krefetz, D.; Smith, W.; Marbury, T.; Lawitz, E. J. Viral Hepatitis 2016, 23,614.
[3]
(e) Lamb, Y.N. Drugs 2017, 77,1797.
[3]
Zeng, J.; Xu, Z.; Ma, J. Chin. J. Org. Chem. 2020, 40,1105. (in Chinese)
[3]
( 曾俊良, 许志红, 马军安, 有机化学, 2020, 40,1105.)
[4]
For selected reviews on difluoromethylation, see: (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009,7465.
[4]
(b) Lu, Y.; Liu, C.; Chen, Q.-Y. Curr. Org. Chem. 2015, 19,1638.
[4]
(c) Belhomme, M.C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem. -Eur. J. 2015, 21,12836.
[4]
(d) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73,90. (in Chinese)
[4]
( 倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73,90.)
[4]
(e) Xu, P.; Guo, S.; Wang, L.; Tang, P. Synlett 2015, 26,36.
[4]
(f) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6,139.
[4]
(g) Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23,14676.
[4]
(h) Wang, W.; Yu, Q.; Zhang, Q.; Li, J.; Hui, F.; Yang, J.; Lü, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2018, 38,1569. (in Chinese)
[4]
( 王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 金传飞, 张英俊, 有机化学, 2018, 38,1569.)
[4]
(i) Feng, Z.; Xiao, Y.-L.; Zhang, X. Acc. Chem. Res. 2018, 51,2264.
[4]
(j) Mykhailiuk, P.K.; Koenigs, R.M. Chem. -Eur. J. 2019, 25,6053.
[5]
Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51,8805.
[6]
Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., nt. Ed. 2013, 52,12390.
[7]
For a recent example, see: Gao, X.; He, X.; Zhang, X. Chin. J. Org. Chem. 2019, 39,215. (in Chinese)
[7]
( 高兴, 何旭, 张新刚, 有机化学, 2019, 39,215.)
[8]
Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Org. Lett. 2011, 13,5342.
[9]
For a review, see: Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39,2726. (in Chinese)
[9]
( 陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39,2726.)
[10]
Xu, L.; Vicic, D.A. J. Am. Chem. Soc. 2016, 138,2536.
[11]
Chang, D.; Gu, Y.; Shen, Q. Chem. -Eur. J. 2015, 21,6074.
[12]
Fujita, T.; Sanada, S.; Chiba, Y.; Sugiyama, K.; Ichikawa, J. Org. Lett. 2014, 16,1398.
[13]
Hanamoto, T.; Kurosato, F.; Ishikawa, T.; Yamada, Y. Synlett 2015, 26,1827.
[14]
Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Tetrahedron 2009, 65,5278.
[15]
For selected reviews, see: (a) Zhang, Y.; Wang, J. Chem. Commun. 2009, 36,5350.
[15]
(b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46,236.
[15]
(c) Qiu, D.; Qiu, M.; Ma, R.; Zhang, Y.; Wang, J. Acta Chim. Sinica 2016, 74,472. (in Chinese)
[15]
( 邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74,472.)
[15]
(d) Liu, L.; Zhang, J. Chin. J. Org. Chem. 2017, 37,1117. (in Chinese)
[15]
( 刘路, 张俊良, 有机化学, 2017, 37,1117.)
[15]
(e) Gao, Y.; Wang, J. Chin. J. Org. Chem. 2018, 38,1275. (in Chinese)
[15]
( 郜云鹏, 王剑波, 有机化学, 2018, 38,1275.)
[15]
(f) Yang, Z.; Stivanin, M.L.; Jurberg, I.D.; Koenigs, R.M. Chem. Soc. Rev. 2020, 49,6833.
[15]
(g) Zhao, R.; Shi, L. Angew. Chem., nt. Ed. 2020, 59,12282.
[15]
(h) Wu, S.; Song, H.-X.; Zhang, C.-P. Chem.-Asian J. 2020, 15,1660.
[16]
Gilman, H.; Jones, R.G. J. Am. Chem. Soc. 1943, 65,1458.
[17]
For a leading review, see: (a) Mykhailiuk, P. K. Chem Rev. 2020, 120,12718.
[17]
For selected references, see: (b) Morandi, B.; Mariampillai, B.; Carreira, E.M. Angew. Chem., nt. Ed. 2011, 50,1101.
[17]
(c) Wu, G.; Deng, Y.; Wu, C.; Wang, X.; Zhang, Y.; Wang, J. Eur. J. Org. Chem. 2014, 2014,4477.
[17]
(d) Luo, H.; Wu, G.; Zhang, Y.; Wang, J. Angew. Chem., nt. Ed. 2015, 54,14503.
[17]
(e) Chen, Z.; Zheng, Y.; Ma, J.-A. Angew. Chem., nt. Ed. 2017, 56,4569.
[17]
(f) Chen, Z.; Ren, N.; Ma, X.; Nie, J.; Zhang, F.-G.; Ma, J.-A. ACS Catal. 2019, 9,4600.
[17]
(g) Li, J.; Zhang, D.; Chen, J.; Ma, C.; Hu, W. ACS Catal. 2020, 10,4559.
[18]
(a) Atherton, J.H.; Fields, R.; Haszeldine, R.N. J. Chem. Soc. C 1971,366.
[18]
(b) Mykhailiuk, P.K. Org. Biomol. Chem. 2015, 13,3438.
[19]
Mykhailiuk, P.K. Angew. Chem., nt. Ed. 2015, 54,6558.
[20]
Li, J.; Yu, X.-L.; Cossy, J.; Lv, S.-Y.; Zhang, H.-L.; Su, F.; Mykhailiuk, P.K.; Wu, Y. Eur. J. Org. Chem. 2017, 2017,266.
[21]
Zheng, Y.; Yu, X.; Lv, S.; Mykhailiuk, P.K.; Ma, Q.; Hai, L.; Wu, Y. RSC Adv. 2018, 8,5114.
[22]
Lebed, P.S.; Fenneteau, J.; Wu, Y.; Cossy, J.; Mykhailiuk, P.K. Eur. J. Org. Chem. 2017, 2017,6114.
[23]
Feraldi-Xypolia, A.; Fredj, G.; Tran, G.; Tsuchiya, T.; Vors, J.-P.; Mykhailiuk, P.; GomezPardo, D.; Cossy, J. Asian J. Org. Chem. 2017, 6,927.
[24]
Han, W.-Y.; Zhao, J.; Wang, J.-S.; Xiang, G.-Y.; Zhang, D.-L.; Bai, M.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Org. Biomol. Chem. 2017, 15,5571.
[25]
Han, W.-Y.; Zhao, J.; Wang, J.-S.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Tetrahedron 2017, 73,5806.
[26]
Han, W.-Y.; Zhao, J.; Cui, B.-D.; Chen, Y.-Z. Chin. J. Synth. Chem. 2018, 26,328. (in Chinese)
[26]
( 韩文勇, 赵佳, 崔宝东, 陈永正, 合成化学, 2018, 26,328.)
[27]
Han, W.-Y.; Wang, J.-S.; Zhao, J.; Long, L.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. J. Org. Chem. 2018, 83,6556.
[28]
Wang, J.-S.; Shan, J.; Bai, M.; Cui, B.-D.; Wan, N.-W.; Wang, Y.-S.; Han, W.-Y.; Chen, Y.-Z. Tetrahedron 2018, 74,3904.
[29]
Wang, J.-S.; Huang, K.-S.; Han, W.-Y.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z. Org. Lett. 2019, 21,8751.
[30]
Zhang, X.-W.; Hu, W.-L.; Chen, S.; Hu, X.-G. Org. Lett. 2018, 20,860.
[31]
Gao, Y.; Peng, S.-Q.; Liu, D.-Y.; Rui, P.-X.; Hu, X.-G. Eur. J. Org. Chem. 2019, 2019,1715.
[32]
Mykhailiuk, P.K.; Kishko, I.; Kubyshkin, V.; Budisa, N.; Cossy, J. Chem.-Eur. J. 2017, 23,13279.
[33]
Peng, S.-Q.; Zhang, X.-W.; Zhang, L.; Hu, X.-G. Org. Lett. 2017, 19,5689.
[34]
Li, J.; Ma, C.; Xing, D.; Hu, W. Org. Lett. 2019, 21,2101.
[35]
Mertens, L.; Hock, K.J.; Koenigs, R.M. Chem.-Eur. J. 2016, 22,9542.
[36]
Hock, K.J.; Mertens, L.; Koenigs, R.M. Chem. Commun. 2016, 52,13783.
[37]
Hock, K.J.; Mertens, L.; Metze, F.K.; Schmittmann, C.; Koenigs, R.M. Green Chem. 2017, 19,905.
[38]
Britton, J.; Jamison, T.F. Angew. Chem., nt. Ed. 2017, 56,8823.
[39]
Britton, J.; Jamison, T.F. Eur. J. Org. Chem. 2017, 2017,6566.
[40]
Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Chem. Commun. 2017, 53,3870.
[41]
Duan, Y.; Lin, J.-H.; Xiao, J.-C.; Gu, Y.-C. Org. Chem. Front. 2017, 4,1917.
[42]
Pan, X.-Y.; Zhao, Y.; Qu, H.-A.; Lin, J.-H.; Hang, X.-C.; Xiao, J.-C. Org. Chem. Front. 2018, 5,1452.
[43]
Zeng, J.-L.; Chen, Z.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2018, 20,4562.
[44]
Peng, X.; Xiao, M.-Y.; Zeng, J.-L.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2019, 21,4808.
[45]
Zhang, Z.-Q.; Zheng, M.-M.; Xue, X.-S.; Marek, I.; Zhang, F.-G.; Ma, J.-A. Angew. Chem., nt. Ed. 2019, 58,18191.
[46]
Tan, X.-F.; Zhang, F.-G.; Ma, J.-A. Beilstein J. Org. Chem. 2020, 16,638.
[47]
Peng, X.; Zhang, F.-G.; Ma, J.-A. Adv. Synth. Catal. 2020, 362,4432.
[48]
Ning, Y.; Zhang, X.; Gai, Y.; Dong, Y.; Sivaguru, P.; Wang, Y.; Reddy, B.R. P.; Zanoni, G.; Bi, X. Angew. Chem.,Int. Ed. 2020, 59,6473.
Outlines

/