REVIEWS

Transition-Metal-Catalyzed Polymerization of Cyclopropenes

  • Zepeng Zhang ,
  • Yunpeng Gao ,
  • Shufeng Chen ,
  • Jianbo Wang
Expand
  • a Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
    b Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021
* Corresponding authors. E-mail: ;

Received date: 2020-10-16

  Revised date: 2020-11-08

  Online published: 2020-12-01

Supported by

National Natural Science Foundation of China(91956104); Beijing Outstanding Young Scientist Program(BJJWZYJH01201910001001)

Abstract

As the smallest unsaturated cyclic compounds in nature, cyclopropenes serve as important synthetic intermediates in organic chemistry as well as unique monomers in polymerization. While cyclopropenes are mostly explored in the domain of organic chemistry, the polymerization reaction of cyclopropenes has gradually attracted the attentions of chemists in recent years. The research progress of cyclopropene polymerization is reviewed, including addition polymerization and ring-opening metathesis polymerization (ROMP), and prospects for the future development of this field from the perspective of polymer synthesis methodolody.

Cite this article

Zepeng Zhang , Yunpeng Gao , Shufeng Chen , Jianbo Wang . Transition-Metal-Catalyzed Polymerization of Cyclopropenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1888 -1896 . DOI: 10.6023/cjoc202010024

References

[1]
Stgrzel, M.; Mihan, S.; Mulhaupt, R. Chem. Rev. 2016, 116, 1398.
[2]
Chen, C. Nat. Rev. Chem. 2018, 2, 6.
[3]
Tan, C.; Chen, C. Angew. Chem., Int. Ed. 2019, 58, 7192.
[4]
Mu, H.; Pan, L.; Song, D.; Li, Y. Chem. Rev. 2015, 115, 12091.
[5]
Bermeshev, M. V.; Chapala, P. P. Prog. Polym. Sci. 2018, 84, 1.
[6]
Ma, S.; Cai, Y.; Tu, Y.; Guan, Y.; Chen, X. Polym. Chem. 2016, 7, 3520.
[7]
Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[8]
Zhu, Z.-B.; Wei, Y.; Shi, M. Chem. Soc. Rev. 2011, 40, 5534.
[9]
Vicente, R. Synthesis 2016, 48, 2343.
[10]
Vicente, R. Chem. Rev. 2021, 121, 162.
[11]
Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F.; Li, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 13234.
[12]
Zhang, H.; Wang, B.; Wang, K.; Xie, G.; Li, C.; Zhang, Y.; Wang, J. Chem. Commun. 2014, 50, 8050.
[13]
Zhang, H.; Wang, B.; Yi, H.; Zhang, Y.; Wang, J. Org. Lett. 2015, 17, 3322.
[14]
Wang, B.; Yi, H.; Zhang, H.; Sun, T.; Zhang, Y.; Wang, J. J. Org. Chem. 2018, 83, 1026.
[15]
Dian, L. Y.; Marek, I. Chem. Rev. 2018, 118, 8415.
[16]
Dian, L. Y.; Marek, I. ACS Catal. 2020, 10, 1289.
[17]
Cheng, Q. Q.; Deng, Y. M.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425.
[18]
Li, P.; Zhang, X.; Shi, M. Chem. Commun. 2020, 56, 5457.
[19]
Wiberg, K. B.; Bartley, W. J. J. Am. Chem. Soc. 1960, 82, 6375.
[20]
Weigert, F. J.; Baird, R. L.; Shapley, J. R. J. Am. Chem. Soc. 1970, 92, 6630.
[21]
Binger, P.; McMeeking, J.; Schuchardt, U. Chem. Ber. 1980, 113, 2372.
[22]
Binger, P.; Schuchardt, U. Chem. Ber. 1981, 114, 1649.
[23]
Binger, P.; Büch, H. M.; Benn, R.; Mynott, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 62.
[24]
Rush, S.; Reinmuth, A.; Risse, W. J. Am. Chem. Soc. 1996, 118, 12230.
[25]
Rush, S.; Reinmuth, A.; Risse, W. Macromolecules 1997, 30, 7375.
[26]
Shintani, R.; Iino, R.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 7849.
[27]
Singh, R.; Czekelius, C. R.; Schrock, R. Macromolecules 2006, 39, 1316.
[28]
Meena, J. S.; Thankachan, P. P. Comput. Theor. Chem. 2013, 1024, 1.
[29]
Singh, R.; Schrock, R. R. Macromolecules 2008, 41, 2990.
[30]
Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules 2010, 43, 7515.
[31]
Binder, W. H.; Kurzhals, S.; Pulamagatta, B.; Decker, U.; Pawar, G. M.; Wang, D.; Kühnel, C.; Buchmeiser, M. R. Macromolecules 2008, 41, 8405.
[32]
Binder, W. H.; Pulamagatta, B.; Kurzhals, O. K. S.; Barqawi, H.; Tanner, S. Macromolecules 2009, 42, 9457.
[33]
Dumas, A.; Tarrieu, R.; Vives, T.; Roisnel, T.; Dorcet, V.; Basle?, O.; Mauduit, M. ACS Catal. 2018, 8, 3257.
[34]
Peng, J.-J.; Panda, B.; Satyanarayana, K.; Yang, H.-R.; Huang, S.-L.; Huang, M. J.; Chen, C.-h.; Lai, G.; Lai, Y.-Y.; Luh, T.-Y. Macromolecules 2019, 52, 7749.
[35]
Elling, B. R.; Su, J. K.; Xia, Y. Chem. Commun. 2016, 52, 9097.
[36]
Elling, B. R.; Xia, Y. J. Am. Chem. Soc. 2015, 137, 9922.
[37]
Elling, B. R.; Xia, Y. ACS Macro Lett. 2018, 7, 656.
[38]
Elling, B. R.; Su, J. K.; Xia, Y. ACS Macro Lett. 2020, 9, 180.
[39]
Elling, B. R.; Su, J. K.; Feist, J. D.; Xia, Y. Chem 2019, 5, 2691.
[40]
Su, J. K.; Jin, Z.; Xia, Y. Angew. Chem., Int. Ed. 2019, 58, 17771.
[41]
Su, J. K.; Lee, S. Y.; Elling, B. R.; Xia, Y. Macromolecules 2020, 53, 5833.
[42]
For a recent example of Grubbs-type cis-selective living ROMP, see: Song, J. A.; Peterson, G. I.; Bang, K. T.; Ahmed, T. S.; Sung, J. C.; Grubbs, R. H.; Choi, T. L. J. Am. Chem. Soc. 2020, 142, 10438.
Outlines

/