REVIEWS

Progress in Transition-Metal-Catalyzed Cyclization of Carbodiimides

  • Zhen Zhang ,
  • Wenxu Chang
Expand
  • a College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005
    b Department of Applied Chemistry, China Agricultural University, Beijing 100193
* Corresponding author. E-mail:

Received date: 2020-10-15

  Revised date: 2020-11-05

  Online published: 2020-12-05

Supported by

Doctoral Scientific Research Foundation of Yantai University(HY19B07)

Abstract

Carbodiimide is one of the most efficient precursors to the synthesis of N-containing molecules. Transition-metal- catalyzed cyclization of carbodiimides has become a powerful approach to heterocyclic products, and attracts considerable attention from synthetical and pharmaceutical chemists. The significant amount of documents that were published during the last years proves the importance of this approach in modern organic synthesis. The development of this field over last decade and some pioneering work are summarized. An array of synthetic methods for privileged heterocycles from carbodiimides are presented according to mechanically distinctive processes: cascade cyclization initiated by nucleophilic process, catalytic cyclization via the insertion of carbodiimides into metal-cycle intermediates and annulation of tethered carbodiimides with unsaturated systems.

Cite this article

Zhen Zhang , Wenxu Chang . Progress in Transition-Metal-Catalyzed Cyclization of Carbodiimides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1835 -1850 . DOI: 10.6023/cjoc202010020

References

[1]
(a) Vovk, M. V.; Samarai, L. I. Russ. Chem. Rev. 1992, 61, 297.
[1]
(b) Williams, A.; Ibrahim, I. T. Chem. Rev. 1981, 81, 589.
[1]
(c) Ulrich, H. Chemistry and Technology of Carbodiimides, John Wiley & Sons, Ltd, Chichester, UK, 2007.
[2]
(a) Zhang, W. X.; Hou, Z. Org. Biomol. Chem. 2008, 6, 1720.
[2]
(b) Alonso-Moreno, C.; Antinolo, A.; Carrillo-Hermosilla, F.; Otero, A. Chem. Soc. Rev. 2014, 43, 3406.
[2]
(c) Xu, L.; Zhang, W.-X.; Xi, Z. Organometallics 2015, 34, 1787.
[2]
(d) Zhang, W.-X.; Xu, L.; Xi, Z. Chem. Commun. 2015, 51, 254.
[2]
(e) Wang, L.; Chi, Y.; Zhang, W.; Xi, Z. Chin. J. Org. Chem. 2018, 38, 1341. (in Chinese).
[2]
(王连军, 迟樾, 张文雄, 席振峰, 有机化学, 2018, 38, 1341.)
[3]
Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861.
[4]
Wang, Y.; Zhang, W. X.; Xi, Z. Chem. Soc. Rev. 2020, 49, 5810.
[5]
Lv, X.; Bao, W. J. Org. Chem. 2009, 74, 5618.
[6]
(a) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.
[6]
(b) Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2005, 7, 4781.
[7]
He, H.-F.; Wang, Z.-J.; Bao, W. Adv. Synth. Catal. 2010, 352, 2905.
[8]
Huang, N. Y.; Liu, M. G.; Ding, M. W. J. Org. Chem. 2009, 74, 6874.
[9]
Lin, Y.; Li, E.; Wu, X.; Wang, L.; Wang, H.; Li, X.; Kang, H.; Zhou, L.; Shen, G.; Lv, X. Org. Biomol. Chem. 2020, 18, 1476.
[10]
(a) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2012, 113, 1.
[10]
(b) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Rev. 2015, 115, 5301.
[11]
Zeng, F.; Alper, H. Org. Lett. 2010, 12, 1188.
[12]
(a) Domling, A. Chem. Rev. 2006, 106, 17.
[12]
(b) Lygin, A. V.; de Meijere, A. Angew. Chem., nt. Ed. 2010, 49, 9094.
[13]
Qiu, G.; Liu, G.; Pu, S.; Wu, J. Chem. Commun. 2012, 48, 2903.
[14]
Qiu, G.; Lu, Y.; Wu, J. Org. Biomol. Chem. 2013, 11, 798.
[15]
Larksarp, C.; Alper, H. J. Org. Chem. 1998, 63, 6229.
[16]
(a) Butler, D. C.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65, 5887.
[16]
(b) Zhou, H.-B.; Alper, H. Tetrahedron 2004, 60, 73.
[17]
Wang, F.; Cai, S.; Liao, Q.; Xi, C. J. Org. Chem. 2011, 76, 3174.
[18]
Shen, G.; Bao, W. Adv. Synth. Catal. 2010, 352, 981.
[19]
Duangjan, C.; Rukachaisirikul, V.; Saithong, S.; Kaeobamrung, J. Tetrahedron Lett. 2018, 59, 3537.
[20]
Han, M.-S.; Hahn, H.-G. Bull. Korean Chem. Soc. 2012, 33, 1371.
[21]
Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773.
[22]
Chi, Y.; Xu, L.; Du, S.; Yan, H.; Zhang, W. X.; Xi, Z. Chem.-Eur. J. 2015, 21, 10369.
[23]
Lu, C.; Gong, C.; Zhao, B.; Hu, L.; Yao, Y. J. Org. Chem. 2018, 83, 1154.
[24]
Das, S.; Bhattacharjee, J.; Panda, T. K. Dalton Trans. 2019, 48, 7227.
[25]
Chi, Y.; Yan, H.; Zhang, W. X.; Xi, Z. Org. Lett. 2017, 19, 2694.
[26]
Pathare, R. S.; Ansari, A. J.; Verma, S.; Maurya, A.; Maurya, A. K.; Agnihotri, V. K.; Sharon, A.; Pardasani, R. T.; Sawant, D. M. J. Org. Chem. 2018, 83, 9530.
[27]
Zeng, F.; Alper, H. Org. Lett. 2010, 12, 3642.
[28]
Qiu, G.; He, Y.; Wu, J. Chem. Commun. 2012, 48, 3836.
[29]
Qiu, G.; Wu, J. Chem. Commun. 2012, 48, 6046.
[30]
Yuan, G.; Liu, H.; Gao, J.; Yang, K.; Niu, Q.; Mao, H.; Wang, X.; Lv, X. J. Org. Chem. 2014, 79, 1749.
[31]
Xu, B.; Peng, B.; Cai, B.; Wang, S.; Wang, X.; Lv, X. Adv. Synth. Catal. 2016, 358, 653.
[32]
Hao, W.; Sang, X.; Xiao, Y.; Cai, M. Tetrahedron Lett. 2016, 57, 4207.
[33]
Hong, P.; Yamazaki, H. Tetrahedron Lett. 1977, 18, 1333.
[34]
Hoberg, H.; Burkhart, G. Synthesis 1979, 1979, 525.
[35]
Young, D. D.; Deiters, A. Angew. Chem., nt. Ed. 2007, 46, 5187.
[36]
Ishii, M.; Mori, F.; Tanaka, K. Chem.-Eur. J. 2014, 20, 2169.
[37]
Tanaka, K.; Mimura, M.; Hojo, D. Tetrahedron 2009, 65, 9008.
[38]
Raghuvanshi, A.; Singh, A. K.; Mobin, S. M.; Mathur, P. ChemistrySelect 2017, 2, 9245.
[39]
Zhang, Z.; Qin, Z.; Chang, W.; Li, J.; Fan, R.; Wu, X.; Guo, R.; Xie, X.; Zhou, L. Adv. Synth. Catal. 2020, 362, 2864.
[40]
Lee, E. E.; Rovis, T. Org. Lett. 2008, 10, 1231.
[41]
Li, Z.; Huo, T.; Li, L.; Feng, S.; Wang, Q.; Zhang, Z.; Pang, S.; Zhang, Z.; Wang, P.; Zhang, Z. Org. Lett. 2018, 20, 7762.
[42]
Wang, Y.; Li, Z.; Zhao, H.; Zhang, Z. Synthesis 2019, 51, 3250.
[43]
Tsukano, C.; Nakajima, M.; Hande, S. M.; Takemoto, Y. Org. Biomol. Chem. 2019, 17, 1731.
[44]
Saito, T.; Shiotani, M.; Otani, T.; Hasaba, S. Heterocycles 2003,60.
[45]
Saito, T.; Sugizaki, K.; Otani, T.; Suyama, T. Org. Lett. 2007, 9, 1239.
[46]
Mukai, C.; Yoshida, T.; Sorimachi, M.; Odani, A. Org. Lett. 2006, 8, 83.
[47]
Saito, T.; Furukawa, N.; Otani, T. Org. Biomol. Chem. 2010, 8, 1126.
[48]
Otani, T.; Saito, T.; Sakamoto, R.; Osada, H.; Hirahara, A.; Furukawa, N.; Kutsumura, N.; Matsuo, T.; Tamao, K. Chem. Commun. 2013, 49, 6206.
[49]
Tateno, K.; Ogawa, R.; Sakamoto, R.; Tsuchiya, M.; Kutsumura, N.; Otani, T.; Ono, K.; Kawai, H.; Saito, T. J. Org. Chem. 2018, 83, 690.
[50]
Otani, T.; Onishi, M.; Seino, T.; Furukawa, N.; Saito, T. RSC Adv. 2014, 4, 53669.
[51]
Zhang, Z.; Xiao, F.; Huang, B.; Hu, J.; Fu, B.; Zhang, Z. Org. Lett. 2016, 18, 908.
Outlines

/