ARTICLES

Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides and Its Application to the Synthesis of the Core Sturctures of Aporphine and Aristolactam Alkaloids

  • Honglei Jin ,
  • Fengxuan Jiang ,
  • Kai Cheng ,
  • Lehao Huang
Expand
  • a School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035
    b Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000
* Corresponding authors. E-mail: ;

Received date: 2020-10-16

  Revised date: 2020-11-11

  Online published: 2020-12-05

Supported by

Zhejiang Provincial Natural Science Foundation of China(LY18B020010); Opening Project of the Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences(201705); Foundation of Wenzhou Medical University Renji College(RJRC14001)

Abstract

A practical methodology for the palladium-catalyzed regioselective alkylation of 8-C—H bonds in 1-naphthyl- amides containing a quinolinamide moiety as bidentate directing group with functionalized alkyl halides is reported. Various functionalized alkyl halides includingα-bromo esters and ketones can be employed as coupling partners, providing exclusively 8-alkyl-1-naphthylamine derivatives. In particular, the alkylated products with these ester and carbonyl groups can readily be further converted into the core structures of aporphine and aristolactam alkaloids respectively.

Cite this article

Honglei Jin , Fengxuan Jiang , Kai Cheng , Lehao Huang . Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides and Its Application to the Synthesis of the Core Sturctures of Aporphine and Aristolactam Alkaloids[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1691 -1702 . DOI: 10.6023/cjoc202010023

References

[1]
For representative reviews on C—H functionalization, see: (a) Alberico, D.; Scott, M. E.; Lautens, M.; Chem. Rev. 2007, 107,174.
[1]
(b) Ackermann, L. Chem. Commun. 2010, 46,4866.
[1]
(c) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1,191.
[1]
(d) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52,11726.
[1]
(e) Daugulis, O.; Roane, J.; Tran, L.D. Acc. Chem. Res. 2015, 48,1053.
[1]
(f) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2,1107.
[1]
(g) He, G.; Wang, B.; Nack, W.A.; Chen, G. Acc. Chem. Res. 2016, 49,635.
[1]
(h) Dong, Z.; Ren, Z.; Thompson, S.J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117,9333.
[1]
(i) Saint-Denis, T.G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359,eaao4798.
[1]
(j) Sambiagio, C.; Sch?nbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M.F.; Wencel-Delord, J.; Besset, T.; Maes, B.U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47,6603.
[1]
(k) Rej, S.; Ano, Y.; Chatani, N. Chem. Rev. 2020, 120,1788.
[1]
(l) Liao, G.; Wu, Y.-J.; Shi, B.-F. Acta Chim. Sinica 2020, 78,289. (in Chinese)
[1]
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78,289.)
[1]
(m) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38,635.
[2]
For representative reviews on C—H functionalization logic in natural products and medicinal compounds, see: (a) Godula, K.; Sames, D.; Science 2006, 312,67.
[2]
(b) Gutekunst, W.R.; Baran, P.S. Chem. Soc. Rev. 2011, 40,1976.
[2]
(c) Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51,8960.
[2]
(d) Chen, D.Y. K.; Youn, S.W. Chem.-Eur. J. 2012, 18,9452.
[2]
(e) Cernak, T.; Dykstra, K.D.; Tyagarajan, S.; Vachal, P.; Krska, S.W. Chem. Soc. Rev. 2016, 45,546.
[2]
(f) Wang, W.; Lorion, M.M.; Shah, J.; Kapdi, A.R.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57,14700.
[3]
(a) Huang, L.; Li, Q.; Wang, C.; Qi, C. J. Org. Chem. 2013, 78,3030.
[3]
(b) Huang, L.; Sun, X.; Li, Q.; Qi, C. J. Org. Chem. 2014, 79,6720.
[4]
(a) Nadres, E.T.; Santos, G.I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78,9689.
[4]
(b) Yu, X.; Yang, F.; Wu, Y.; Wu, Y. Org. Lett. 2019, 21,1726.
[4]
(c) Shi, Y.; Yang, F.; Wu, Y. Org. Biomol. Chem. 2020, 18,4628.
[4]
(d) Li, Z.; Sun, S.; Qiao, H.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18,4594.
[4]
(e) Guan, D.; Han, L.; Wang, L.; Song, H.; Chu, W.; Sun, Z. Chem. Lett. 2015, 44,743.
[4]
(f) Wang, L.; Yang, M.; Liu, X.; Song, H.; Han, L.; Chu, W.; Sun, Z. Appl. Organomet. Chem. 2016, 30,680.
[4]
(g) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79,11330.
[5]
For representative reviews on the biological activities of aporphine alkaloids,see: (a) Guinaudeau, H.; Leboeuf, M.; Cavé, A. J. Nat. Prod. 1994, 57,1033.
[5]
(b) Ríos, J.L.; Má?ez, S.; Giner, R.M.; Recio, M.C. In The Alkaloids: Chemistry and Biology,Ed.: Cordell, G. A., Academic Press, 1999, Vol.53, p.57.
[5]
For representative reviews on the biological activities of aristolactam alkaloids,see: (c) Kumar, V.; Poonam; Prasad, A.K.; Parmar, V.S. Nat. Prod. Rep. 2003, 20,565.
[5]
(d) Bentley, K.W. Nat. Prod. Rep. 2006, 23,444.
[6]
For representative examples on the biological activities of aporphine alkaloids,see: (a) Zhang, A.; Zhang, Y.; Branfman, A. R.; Baldessarini, R. J.; Neumeyer, J. L. J. Med. Chem. 2007, 50,171.
[6]
(b) Stevigny, C.; Bailly, C.; Quetin-Leclercq, J. Anti-Cancer Agents Med. Chem. 2005, 5,173.
[6]
(c) Mohamed, S.M.; Hassan, E.M.; Ibrahim, N.A. Nat. Prod. Res. 2009, 24,1395.
[6]
(d) Boustie, J.; Stigliani, J.-L.; Montanha, J.; Amoros, M.; Payard, M.; Girre, L. J. Nat. Prod. 1998, 61,480.
[7]
For representative examples on the biological activities of aristolactam alkaloids, see: (a) Chia, Y.-C.; Chang, F.-R.; Teng, C.-M.; Wu, Y.-C. J. Nat. Prod. 2000, 63,1160.
[7]
(b) Zhang, Y.-N.; Zhong, X.-G.; Zheng, Z.-P.; Hu, X.-D.; Zuo, J.-P.; Hu, L.-H. Bioorg. Med. Chem. 2007, 15,988.
[7]
(c) Lee, H.S.; Han, D.S. J. Nat. Prod. 1992, 55,1165.
[8]
Song, J.; Chen, W.; Zhao, Y.; Li, C.; Liang, G.; Huang, L. RSC Adv. 2016, 6,54984.
[9]
(a) De Kimpe, N.; Verhé, R. α-Haloketones, α-Haloaldehydes and α-Haloimines, Wiley, New York, 1988, p. 1.
[9]
(b) Yasuda, M.; Tsuji, S.; Shigeyoshi, Y.; Baba, A. J. Am. Chem. Soc. 2002, 124,7440.
[9]
(c) Malosh, C.F.; Ready, J.M. J. Am. Chem. Soc. 2004, 126,10240.
[9]
(d) Liu, C.; He, C.; Shi, W.; Chen, M.; Lei, A. Org. Lett. 2007, 9,5601.
[9]
(e) Lundin, P.M.; Fu, G.C. J. Am. Chem. Soc. 2010, 132,11027.
[9]
(f) Huang, K.; Li, G.; Huang, W.-P.; Yu, D.-G.; Shi, Z.-J. Chem. Commun. 2011, 47,7224.
[9]
(g) Mao, J.; Liu, F.; Wang, M.; Wu, L.; Zheng, B.; Liu, S.; Zhong, J.; Bian, Q.; Walsh, P.J. J. Am. Chem. Soc. 2014, 136,17662.
[9]
(h) Shu, W.-M.; Ma, J.-R.; Zheng, K.-L.; Wu, A.-X. Org. Lett. 2016, 18,196.
[9]
(i) Liu, W.; Cao, W.; Hu, H.; Lin, L.; Feng, X. Chem. Commun. 2018, 54,8901.
[10]
For representative examples on the α-halo esters and ketones can be employed as the alkylation reagent in C—H functionalization, see: (a) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,12084.
[10]
(b) Liu, C.; Liu, D.; Zhang, W.; Zhou, L.; Lei, A. Org. Lett. 2013, 15,6166.
[10]
(c) Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. Chem.-Eur. J. 2013, 19,7691.
[10]
(d) Yu, D.-G.; de Azambuja, F.; Glorius, F. Angew. Chem. Int. Ed. 2014, 53,2754.
[10]
(e) Xie, C.; Dai, Z.; Niu, Y.; Ma, C. J. Org. Chem. 2018, 83,2317.
[10]
(f) Li, J.; Zhang, Z.; Tang, M.; Zhang, X.; Jin, J. Org. Lett. 2016, 18,3898.
[10]
(g) Zhou, J.; Li, J.; Li, Y.; Wu, C.; He, G.; Yang, Q.; Zhou, Y.; Liu, H. Org. Lett. 2018, 20,7645.
[11]
During preparation of the manuscript, similar reaction was reported by the Wu group: Wang, X.; Feng, C.; Yang, F.; Wu, Y. Org. Biomol. Chem. 2019, 17,4865.
[12]
He, G.; Lu, C.; Zhao, Y.; Nack, W.A.; Chen, G. Org. Lett. 2012, 14,2944.
[13]
Hase, T. Synthesis 1980,36.
[14]
(a) Zaitsev, V.G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127,13154.
[14]
(b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132,3965.
[14]
(c) Nadres, E.T.; Daugulis, O. J. Am. Chem. Soc. 2011, 134,7.
[14]
(d) Tran, L.D.; Daugulis, O. Angew. Chem., nt. Ed. 2012, 51,5188.
[14]
(e) He, G.; Chen, G. Angew. Chem., nt. Ed. 2011, 50,5192.
[15]
(a) Xie, Y.; Yang, Y.; Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2012, 14,1238.
[15]
(b) Zhang, M.; Li, R.; Yang, Z.; Feng, R. Chin. J. Org. Chem. 2020, 40,714. (in Chinese)
[15]
( 张梦帆, 李瑞鹏, 杨震, 冯若昆, 有机化学, 2020, 40,714.)
[16]
(a) Xie, A.; Cao, M.; Liu, Y.; Feng, L.; Hu, X.; Dong, W. Eur. J. Org. Chem. 2014,436.
[16]
(b) Li, Q.; Zhang, S.-Y.; He, G.; Ai, Z.; Nack, W.A.; Chen, G. Org. Lett. 2014, 16,1764.
[17]
DeRuiter, J.; Swearingen, B.E.; Wandrekar, V.; Mayfield, C.A. J. Med. Chem. 1989, 32,1033.
[18]
Jia, X.; Huang, Q.; Li, J.; Li, S.; Yang, Q. Synlett 2007,0806.
[19]
Yang, N.C.; Lenz, G.R.; Shani, A. Tetrahedron Lett. 1966, 7,2941.
[20]
Ying, J.; Fu, L.-Y.; Zhong, G.; Wu, X.-F. Org. Lett. 2019, 21,5694.
Outlines

/