Chinese Journal of Organic Chemistry >
Selective Chlorination of Methane Photochemically Mediated by Ferric Chloride at Ambient Temperature
Received date: 2020-09-20
Revised date: 2020-11-15
Online published: 2020-12-10
Supported by
National Natural Science Foundation of China(21772021)
Selective activation of methane under mild conditions to produce functionalized products is highly lucrative but remains challenging. The photochemical reaction of anhydrous ferric chloride (FeCl3) with methane at ambient temperature is an efficient process to selectively chlorinate methane to methyl chloride. An exclusive formation of methyl chloride instead of other multi-chlorinated products is observed, and a maximum initial productivity of 43 gMeCl?(kgFe?h)–1 was obtained under irradiation with a 300-watt high-pressure mercury lamp or solar light. Ferric chloride functions both as the source of reactive chlorine radicals and as the oxidant, and it was concomitantly reduced to ferrous chloride. The reaction rate increases with the power of the lamp and the concentration of ferric chloride. Interestingly, the reaction temperature from 25 to 75 ℃ and the methane pressure in the range of 1~4 MPa had little influence on the reaction rate. Methyl chloride was hydrolyzed to methanol with elimination of hydrogen chloride, and the ferrous product was re-oxidized to the ferric analog by oxygen in the air in the presence of hydrogen chloride, thus completing the loop of both iron and chlorine.
Shangfei Huo , Hong Chen , Weiwei Zuo . Selective Chlorination of Methane Photochemically Mediated by Ferric Chloride at Ambient Temperature[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1683 -1690 . DOI: 10.6023/cjoc202009044
[1] | Lamarche-Gagnon, G.; Wadham, J.L.; Sherwood Lollar, B.; Arndt, S.; Fietzek, P.; Beaton, A.D.; Tedstone, A.J.; Telling, J.; Bagshaw, E.A.; Hawkings, J.R.; Kohler, T.J.; Zarsky, J.D.; Mowlem, M.C.; Anesio, A.M.; Stibal, M. Nature 2019, 565,73. |
[2] | (a) McFarland, E. Science 2012, 338,340. |
[2] | (b) Gunsalus, N.J.; Koppaka, A.; Park, S.H.; Bischof, S.M.; Hashiguchi, B.G.; Periana, R.A. Chem. Rev. 2017, 117,8521. |
[2] | (c) Lin, R.; Amrute, A.P.; Perez-Ramirez, J. Chem. Rev. 2017, 117,4182. |
[2] | (d) Ravi, M.; Ranocchiari, M.; van Bokhoven, J.A. Angew. Chem., nt. Ed. 2017, 56,16464. |
[3] | (a) Fletcher, S.E. M.; Schaefer, H. Science 2019, 364,932. |
[3] | (b) Labinger, J.A.; Bercaw, J.E. Nature 2002, 417,507. |
[3] | (c) Shilov, A.E.; Shul'pin, G.B. Chem. Rev. 1997, 97,2879. |
[3] | (d) Cavaliere, V.N.; Wicker, B.F.; Mindiola, D.J. Adv. Organomet. Chem. 2012, 60,1. |
[4] | (a) Alvarez-Galvan, M.C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R.M.; Fierro, J.L. G. Catal. Today 2011, 171,15. |
[4] | (b) Olsbye, U. Angew. Chem., nt. Ed. 2016, 55,7294. |
[5] | (a) Zimmermann, T.; Soorholtz, M.; Bilke, M.; Schuth, F. J. Am. Chem. Soc. 2016, 138,12395. |
[5] | (b) Periana, R.A.; Taube, D.J.; Evitt, E.R.; Loffler, D.G.; Wentrcek, P.R.; Voss, G.; Masuda, T. Science 1993, 259,340. |
[5] | (c) Periana, R.A.; Taube, D.J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280,560. |
[5] | (d) Lin, M.; Sen, A. Nature 1994, 368,613. |
[5] | (e) Periana, R.A.; Mironov, O.; Taube, D.; Bhalla, G.; Jones, C.J. Science 2003, 301,814. |
[5] | (f) Gretz, E.; Oliver, T.F.; Sen, A. J. Am. Chem. Soc. 1987, 109,8109. |
[5] | (g) Vargaftik, M.N.; Stolarov, I.P.; Moiseev, I.I. J. Chem. Soc., hem. Commun. 1990,1049. |
[5] | (h) Kao, L.C.; Hutson, A.C.; Sen, A. J. Am. Chem. Soc. 1991, 113,700. |
[6] | (a) Takanabe, K.; Iglesia, E. Angew. Chem., nt. Ed. 2008, 47,7689. |
[6] | (b) Hammond, C.; Conrad, S.; Hermans, I. ChemSusChem 2012, 5,1668. |
[6] | (c) Lunsford, J.H. Angew. Chem., nt. Ed. Engl. 1995, 34,970. |
[6] | (d) Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.-H.; Yuan, R.; Huang, X.-H.; Wang, X.; Wang, X.; Long, J. Energy Environ. Sci. 2018, 11,294. |
[6] | (e) Wu, S.; Tan, X.; Lei, J.; Chen, H.; Wang, L.; Zhang, J. J. Am. Chem. Soc. 2019, 141,6592. |
[7] | Horn, R.; Schloegl, R. Catal. Lett. 2015, 145,23. |
[8] | (a) Bilke, M.; Losch, P.; Vozniuk, O.; Bodach, A.; Schuth, F. J. Am. Chem. Soc. 2019, 141,11212. |
[8] | (b) Olah, G.A.; Gupta, B.; Farina, M.; Felberg, J.D.; Ip, W.M.; Husain, A.; Karpeles, R.; Lammertsma, K.; Melhotra, A.K.; Trivedi, N.J. J. Am. Chem. Soc. 1985, 107,7097. |
[8] | (c) Zhou, X.P.; Yilmaz, A.; Yilmaz, G.A.; Lorkovic, I.M.; Laverman, L.E.; Weiss, M.; Sherman, J.H.; McFarland, E.W.; Stucky, G.D.; Ford, P.C. Chem. Commun. 2003,2294. |
[8] | (d) Paunovic, V.; Zichittella, G.; Moser, M.; Amrute, A.P.; Perez-Ramirez, J. Nat. Chem. 2016, 8,803. |
[8] | (e) Podkolzin, S.G.; Stangland, E.E.; Jones, M.E.; Peringer, E.; Lercher, J.A. J. Am. Chem. Soc. 2007, 129,2569. |
[8] | (f) He, J.; Xu, T.; Wang, Z.; Zhang, Q.; Deng, W.; Wang, Y. Angew. Chem., nt. Ed. 2012, 51,2438. |
[9] | (a) Li, F.; Yuan, G. Angew. Chem., nt. Ed. 2006, 45,6541. |
[9] | (b) Batamack, P.T. D.; Mathew, T.; Prakash, G.K. S. J. Am. Chem. Soc. 2017, 139,18078. |
[10] | (a) Paunovic, V.; Lin, R.; Scharfe, M.; Amrute, A.P.; Mitchell, S.; Hauert, R.; Perez-Ramirez, J. Angew. Chem., nt. Ed. 2017, 56,9791. |
[10] | (b) Shalygin, A.; Paukshtis, E.; Kovalyov, E.; Bal'Zhinimaev, B. Front. Chem. Sci. Eng. 2013, 7,279. |
[11] | (a) Maldotti, A.; Molinari, A.; Amadelli, R. Chem. Rev. 2002, 102,3811. |
[11] | (b) Wu, W.; Fu, Z.; Wen, X.; Wang, Y.; Zou, S.; Meng, Y.; Liu, Y.; Kirk, S.R.; Yin, D. Appl. Catal. A: Gen. 2014, 469,483. |
[12] | Blanksby, S.J.; Ellison, G.B. Acc. Chem. Res. 2003, 36,255. |
[13] | (a) Minisci, F.; Fontana, F. Tetrahedron Lett. 1994, 35,1427. |
[13] | (b) Kochi, J.K. Science 1967, 155,415. |
[14] | Bach, R.D.; Shobe, D.S.; Schlegel, H.B.; Nagel, C.J. J. Phys. Chem. 1996, 100,8770. |
[15] | Chang, P. K. A.J.-H. C. J. Org. Chem. 1971, 36,3138. |
[16] | Miller, J. WO 9959946, 1999. |
[17] | (a) Roberts, B.P. Chem. Soc. Rev. 1999, 28,25. |
[17] | (b) Le, C.; Liang, Y.; Evans, R.W.; Li, X.; Mac-Millan, D.W. C. Nature 2017, 547,79. |
[18] | (a) Sorokin, A.B.; Kudrik, E.V.; Alvarez, L.X.; Afanasiev, P.; Millet, J.M. M.; Bouchu, D. Catal. Today 2010, 157,149. |
[18] | (b) An, Z.-J.; Pan, X.-L.; Liu, X.-M.; Han, X.-W.; Bao, X.-H. J. Am. Chem. Soc. 2006, 128,16028. |
[18] | (c) Bar-Nahum, I.; Khenkin, A.M.; Neumann, R. J. Am. Chem. Soc. 2004, 126,10236. |
[18] | (d) Muehlhofer, M.; Strassner, T.; Herrmann, W.A. Angew. Chem., nt. Ed. 2002, 41,1745. |
[18] | (e) Kirillova, M.V.; Kuznetsov, M.L.; Reis, P.M.; da Silva, J.A. L.; da Silva, J. J., R.F.; Pombeiro, A.J. L. J. Am. Chem. Soc. 2007, 129,10531. |
[19] | (a) Lange, J.-P. ChemSusChem 2017, 10,245. |
[19] | (b) Lange, J.P. CATTECH 2001, 5,82. |
[20] | Lange, J.-P. Catal. Sci. Technol. 2016, 6,4759. |
[21] | Lange, J.-P.; Sushkevich, V.L.; Knorpp, A.J.; van Bokhoven, J.A. Ind. Eng. Chem. Res. 2019, 58,8674. |
[22] | Knuuttila, P.T.; Jokinen, S.S.; Judin, V.O.; Vuorisalo, J.T.; Salanne, S.S. EP 0493023, 1992. |
[23] | Horvath, I.T.; Pa, N.H.; Summit, J.M. M.; Cook, R.A. US 5354916, 1994. |
[24] | Mizuta, S.; Kondo, W.; Fujii, K.; Iida, H.; Isshiki, S.; Noguchi, H.; Kikuchi, T.; Sue, H.; Sakai, K. Ind. Eng. Chem. Res. 1991, 30,1601. |
/
〈 |
|
〉 |