REVIEWS

Recent Progress in the Synthesis of Medium-Sized Ring and Macrocyclic Compounds

  • Xinyuan Zhang ,
  • Li Lin ,
  • Jing Li ,
  • Shiyu Duan ,
  • Yuhang Long ,
  • Jiahong Li
Expand
  • 1 School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031
* Corresponding author. E-mail:

Received date: 2020-10-18

  Revised date: 2020-11-30

  Online published: 2020-12-10

Supported by

Student's Platform for Innovation and Entrepreneurship Training Program(201910613081)

Abstract

Medium-sized rings (8~11 membered ring) and macrocycles (12-membered rings and above) are extremely important parts of drug and natural products. Meanwhile, they are widely used in the field of medicinal chemistry, organic chemistry and other fields. Developing simple, green and efficient protocol to synthesize medium-sized rings and macrocycles has attracted great interests from chemists in the recent years. The latest ring expansion/cyclization reaction in the synthesis of medium-sized ring and macrocyclic compounds in the past five years is reviewed, and the prospect of their future and development is also outlined.

Cite this article

Xinyuan Zhang , Li Lin , Jing Li , Shiyu Duan , Yuhang Long , Jiahong Li . Recent Progress in the Synthesis of Medium-Sized Ring and Macrocyclic Compounds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1878 -1887 . DOI: 10.6023/cjoc202010026

References

[1]
Hesse, M. Ring Enlargement in Organic Chemistry, Wiley-VCH, Weinheim, Germany, 1991.
[2]
(a) Clarke, A. K.; Unsworth, W. P. Chem. Sci. 2020, 11, 2876.
[2]
(b) Terrett, N. K. Drug Discovery Today: Technol. 2010, 7, e97.
[2]
(c) Hussain, A.; Yousuf, S. K.; Mukherjee, D. RSC Adv. 2014, 4, 43241.
[3]
Khan, A. R.; Parrish, J. C.; Fraser, M. E.; Smith, W. W.; Bartlett, P. A.; James, M. N. G. Biochemistry 1998, 37, 16839.
[4]
Kwon, Y.-U.; Kodadek, T. Cell Chem. Biol. 2007, 14, 671.
[5]
Maier, M. E. Angew. Chem., nt. Ed. 2000, 39, 2073.
[6]
Zhao, Y.; Lv, Y.; Xia, W. Chem. Rec. 2018, 19, 424.
[7]
Yet, L. Chem. Rev. 2000, 100, 2963.
[8]
Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
[9]
(a) Beck, B.; Larbig, G.; Mejat, B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.; D?mling, A. Org. Lett. 2003, 5, 1047.
[9]
(b) Leon, F.; Rivera, D. G.; Wessjohann, L. A. J. Org. Chem. 2008, 73, 1762.
[9]
(c) Abdelraheem, E. M. M.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; D?mling, A. J. Org. Chem. 2016, 81, 8789.
[10]
Abdelraheem, E. M. M.; Madhavachary, R.; Rossetti, A.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; Shaabani, S.; D?mling, A. Org. Lett. 2017, 19, 6176.
[11]
Madhavachary, R.; Abdelraheem, E. M. M.; Rossetti, A.; Twarda- Clapa, A.; Musielak, B.; Kurpiewska, K.; Kalinowska-T?u?cik, J.; Holak, T. A.; D?mling, A. Angew. Chem., nt. Ed. 2017, 56, 10725.
[12]
Zhou, B.; Zhang, Y.-Q.; Zhang, K.; Yang, M.-Y.; Chen, Y.-B.; Li, Y.; Peng, Q.; Zhu, S.-F.; Zhou, Q.-L.; Ye, L.-W. Nat. Commun. 2019, 10, 3234.
[13]
Lawer, A.; Rossi-Ashton, J. A.; Stephens, T. C.; Challis, B. J.; Epton, R. G.; Lynam, J. M.; Unsworth, W. P. Angew. Chem.,Int. Ed. 2019, 58, 13942.
[14]
Ni, R.; Mitsuda, N.; Kashiwagi, T.; Igawa, K.; Tomooka, K. Angew. Chem., nt. Ed. 2015, 54, 1190.
[15]
Mathiew, M.; Tan, J. K.; Chan, P. W. H. Angew. Chem., nt. Ed. 2018, 57, 14235.
[16]
Kitsiou, C.; Hindes, J. J.; I'Anson, P.; Jackson, P.; Wilson, T. C.; Daly, E. K.; Felstead, H. R.; Hearnshaw, P.; Unsworth, W. P. Angew. Chem., nt. Ed. 2015, 54, 15794.
[17]
Stephens, T. C.; Lodi, M.; Steer, A. M.; Lin, Y.; Gill, M. T.; Unsworth, W. P. Chem.-Eur. J. 2017, 23, 13314.
[18]
Stephens, T. C.; Lawer, A.; French, T.; Unsworth, W. P. Chem.-Eur. J. 2018, 24, 13947.
[19]
Costil, R.; Lefebvre, Q.; Clayden, J. Angew. Chem., nt. Ed. 2017, 56, 14602.
[20]
Zhao, W.; Qian, H.; Li, Z.; Sun, J. Angew. Chem., nt. Ed. 2015, 54, 10005.
[21]
Zhou, Y.; Wei, Y. L.; Rodriguez, J.; Coquerel, Y. Angew. Chem., nt. Ed. 2019, 58, 456.
[22]
Kasun, Z. A.; Geary, L. M.; Krische, M. J. Chem. Commun. 2014, 50, 7545.
[23]
Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem., nt. Ed. 2017, 56, 2927.
[24]
Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R.; Zhao, Y. Angew. Chem., nt. Ed. 2018, 57, 1596.
[25]
Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 1258.
[26]
Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Biol. 2013, 9, 21.
[27]
Guney, T.; Wenderski, T. A.; Boudreau, M. W.; Tan, D. S. Chem.- Eur. J. 2018, 24, 13150.
[28]
Hall, J. E.; Matlock, J. V.; Ward, J. W.; Gray, K. V.; Clayden, J. Angew. Chem., nt. Ed. 2016, 55, 11153.
[29]
Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X. Y. Angew. Chem., nt. Ed. 2016, 55, 15100.
[30]
Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
[31]
Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
[32]
(a) Dowd, P.; Choi, S. C. J. Am. Chem. Soc. 1987, 109, 3493.
[32]
(b) Beckwith, A. L. J.; O'Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565.
[33]
Hierold, J.; Lupton, D. W. Org. Lett. 2012, 14, 3412.
[34]
Deguchi, M.; Fujiya, A.; Yamaguchi, E.; Tada, N.; Uno, B.; Itoh, A. RSC Adv. 2018, 8, 15825.
[35]
Wang, M.; Li, M.; Yang, S.; Xue, X.-S.; Wu, X.; Zhu, C. Nat. Commun. 2020, 11, 672.
[36]
Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.; Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem. 2018, 57, 14225.
[37]
Wang, N.; Wang, J.; Guo, Y. L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H. X.; Guo, Z.; Li, Z. L.; Liu, X. Y. Chem. Commun. 2018, 54, 8885.
[38]
Zhao, K.; Yamashita, K.; Carpenter, J. E.; Sherwood, T. C.; Ewing, W. R.; Cheng, P. T. W.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 8752.
[39]
Xu, Z.; Huang, Z.; Li, Y.; Kuniyil, R.; Zhang, C.; Ackermann, L.; Ruan, Z. Green Chem. 2020, 22, 1099.
Outlines

/