ARTICLES

Transfer Hydrogenation of Ketones into Alcohols Catalyzed by a Novel Chiral Terpyridine Ruthenium(II) Complex

  • Xiaodie Wang ,
  • Chunyu Liu ,
  • Lingling Miao ,
  • Bingjie Xue ,
  • Xinju Zhu ,
  • Bing Song ,
  • Xinqi Hao ,
  • Guoji Liu
Expand
  • 1 School of Life Sciences, College of Chemistry, Zhengzhou University, Zhengzhou 450001
* Corresponding authors. E-mail: ;

Received date: 2020-12-04

  Revised date: 2020-12-07

  Online published: 2020-12-10

Supported by

National Natural Science Foundation of China(21672192); National Natural Science Foundation of China(21803059); National Natural Science Foundation of China(U1904212)

Abstract

A novel cationic ruthenium(II) complex bearing a chiral symmetrical pineno-fused terpyridine ligand was synthesized and structurally characterized by NMR, HRMS, and X-ray crystallographic determinations. This complex exhibited good catalytic activity in the transfer hydrogenation of ketones. Under optimized conditions, a wide range of ketones underwent hydrogenation smoothly to furnish corresponding alcohols in excellent yields (up to 99%) under relative mild reaction conditions.

Cite this article

Xiaodie Wang , Chunyu Liu , Lingling Miao , Bingjie Xue , Xinju Zhu , Bing Song , Xinqi Hao , Guoji Liu . Transfer Hydrogenation of Ketones into Alcohols Catalyzed by a Novel Chiral Terpyridine Ruthenium(II) Complex[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1543 -1550 . DOI: 10.6023/cjoc202012009

References

[1]
(a) Trost, B.M.; Fleming, I. Comprehensive Organic Synthesis, Vol. 8, Pergamon, Oxford, U.K., 1991, Chapters 1.1~1.8.
[1]
(b) Hudlicky, M. Reductions in Organic Chemistry, 2nd ed., The American Chemical Society, Washington, DC, 1996.
[2]
(a) Gunanathan, C.; Milstein, D. Science 2013, 341,249.
[2]
(b) Ito, J.-I.; Nishiyama, H. Tetrahedron Lett. 2014, 55,3133.
[2]
(c) Nandakumar, A.; Midya, S.P.; Landge, V.G.; Balaraman, E. Angew. Chem., nt. Ed. 2015, 54,11022.
[2]
(d) Wang, D.; Astruc, D. Chem. Rev. 2015, 115,6621.
[2]
(e) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374,27.
[2]
(f) Wang, C.; Xiao, J. Chem. Commun. 2017, 53,3399.
[2]
(g) Corma, A.; Navas, J.; Sabater, M.J. Chem. Rev. 2018, 118,1410.
[2]
(h) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119,2524.
[3]
(a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30,97.
[3]
(b) Noyori, R.; Ohkuma, T. Angew. Chem., nt. Ed. 2001, 40,40.
[3]
(c) Noyori, R. Angew. Chem., nt. Ed. 2002, 41,2008.
[4]
(a) Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Angew. Chem., nt. Ed. 2008, 47,4362.
[4]
(b) Putignano, E.; Bossi, G.; Rigo, P.; Baratta, W. Organometallics 2012, 31,1133.
[4]
(c) Chelucci, G.; Baldino, S.; Baratta, W. Acc. Chem. Res. 2015, 48,363.
[5]
(a) Morris, R.H. Chem. Soc. Rev. 2009, 38,2282.
[5]
(b) Zuo, W.; Lough, A.J.; Li, Y.F.; Morris, R.H. Science 2013, 342,1080.
[5]
(c) Morris, R.H. Acc. Chem. Res. 2015, 48,1494.
[5]
(d) Seo, C.S. G.; Morris, R.H. Organometallics 2019, 38,47.
[6]
(a) Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114,12024.
[6]
(b) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem.-Eur. J. 2015, 21,12226.
[6]
(c) Kumar, A.; Bhatti, T.M.; Goldman, A.S. Chem. Rev. 2017, 117,12357.
[6]
(d) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2019, 119,2681.
[7]
(a) Dani, P.; Karlen, T.; Gossage, R.A.; Gladiali, S.; van Koten, G. Angew. Chem., nt. Ed. 2000, 39,743.
[7]
(b) Ito, J.-I.; Teshima, T.; Nishiyama, H. Chem. Commun. 2012, 48,1105.
[7]
(c) Valdes, H.; Gonzalez-Sebastian, L.; Morales-Morales, D. J. Organomet. Chem. 2017, 845,229.
[8]
(a) Amoroso, D.; Jabri, A.; Yap, G.P. A.; Gusev, D.G.; dos Santos, E.N.; Fogg, D.E. Organometallics 2004, 23,4047.
[8]
(b) Gagliardo, M.; Chase, P.A.; Brouwer, S.; Van Klink, G.P. M.; van Koten, G. Organometallics 2007, 26,2219.
[8]
(c) Azerraf, C.; Gelman, D. Chem.-Eur. J. 2008, 14,10364.
[9]
Du, W.; Wang, L.; Wu, P.; Yu, Z. Chem.-Eur. J. 2012, 18,11550.
[10]
Zhang, G.; Hanson, S.K. Chem. Commun. 2013, 49,10151.
[11]
(a) He, L.-P.; Chen, T.; Xue, D.-X.; Eddaoudi, M.; Huang, K.-W. J. Organomet. Chem. 2012, 700,202.
[11]
(b) Fuentes, J.A.; Carpenter, I.; Kann, N.; Clarke, M.L. Chem. Commun. 2013, 49,10245.
[12]
(a) Kannan, S.; Ramesh, P.; Liu, Y. J. Organomet. Chem. 2007, 692,3380.
[12]
(b) Maclnnis, M.C.; Maclean, D.F.; Lundgren, R.J.; McDonald, R.; Turculet, L. Organometallics 2007, 26,6522.
[13]
(a) Kannan, S.; Ramesh, P.; Liu, Y. J. Organomet. Chem. 2007, 692,3380.
[13]
(b) Maclnnis, M.C.; Maclean, D.F.; Lundgren, R.J.; McDonald, R.; Turculet, L. Organometallics 2007, 26,6522.
[13]
(c) Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Ye, D.; Wang, D. Org. Chem. Front. 2019, 6,3420.
[13]
(d) Xu, Z.; Wang, D.; Yu, X.; Yang, Y.; Wang, D. Adv. Synth. Catal. 2017, 359,3332.
[13]
(e) Yao, W.; Duan, Z.; Zhang, Y.; Sang, X.; Xia, X.; Wang, D. Adv. Synth. Catal. 2019, 361,5695.
[13]
(f) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21,5345.
[13]
(g) Yang, Q.; Zhang, Y.; Zeng, W.; Duan, Z.; Sang, X.; Wang, D. Green Chem. 2019, 21,5683.
[13]
(h) Yao, W.; Zhang, Y.; Zhu, H.; Wang, D. Chin. Chem. Lett. 2020, 31,701.
[13]
(i) Tao, R.; Yang, Y.; Zhu, H.; Hu, X.; Wang, D. Green Chem. 2020, 22, DOI: 10.1039/d0gc02341h.
[13]
(j) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4,3910.
[13]
(k) Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6,62.
[13]
(l) Wu, Q.; Pan, L.; Du, G.; Zhang, C.; Wang, D. Org. Chem. Front. 2018, 5,2668.
[13]
(m) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35,676. (in Chinese)
[13]
( 王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35,676.)
[14]
Cuervo, D.; Gamasa, M.P.; Gimeno, J. Chem.-Eur. J. 2004, 23,425.
[15]
Enthaler, S.; Hagemann, B.; Bhor, S.; Anilkumar, G.; Tse, M.K.; Bitterlich, B.; Junge, K.; Erre, G.; Beller, M. Adv. Synth. Catal. 2007, 349,853.
[16]
(a) Moore, C.M.; Szymczak, N.K. Chem. Commun. 2013, 49,400.
[16]
(b) Shi, J.; Hu, B.; Gong, D.; Shang, S.; Hou, G.; Chen, D. Dalton Trans. 2016, 45,4828.
[17]
(a) Ye, W.; Zhao, M.; Du, W.; Jiang, Q.; Wu, K.; Wu, P.; Yu, Z. Chem.-Eur. J. 2011, 17,4737.
[17]
(b) Ye, W.; Zhao, M.; Yu, Z. Chem.-Eur. J. 2012, 18,10843.
[17]
(c) Jin, W.; Wang, L.; Yu, Z. Organometallics 2012, 31,5664.
[17]
(d) Du, W.; Wu, P.; Wang, Q.; Yu, Z. Organometallics 2013, 32,308.
[17]
(e) Du, W.; Wang, Q.; Wang, L.; Yu, Z. Organometallics 2014, 33,974.
[17]
(f) Chai, H.; Liu, T.; Wang, Q.; Yu, Z. Organometallics 2015, 34,5278.
[17]
(g) Liu, T.; Chai, H.; Wang, L.; Yu, Z. Organometallics 2017, 36,2914.
[17]
(h) Wang, Q.; Chai, H.; Yu, Z. Organometallics 2017, 36,3638.
[17]
(i) Chai, H.; Liu, T.; Yu, Z. Organometallics 2017, 36,4136.
[17]
(j) Chai, H.; Liu, T.; Zheng, D.; Yu, Z. Organometallics 2017, 36,4268.
[18]
(a) Yan, J.; Wang, Y.-B.; Zhu, Z.-H.; Li, Y.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2018, 37,2325.
[18]
(b) Wang, Y.-B.; Liu, Y.-X.; Zhu, Z.-H.; Zhao, X.-M.; Song, B.; Zhu, X.; Hao, X.-Q. J. Saudi Chem. Soc. 2019, 23,104.
[18]
(c) Zhu, Z.-H.; Li, Y.; Wang, Y.-B.; Lan, Z.-G.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2019, 38,2156.
[19]
(a) Li, K.; Niu, J.-L.; Yang, M.-Z.; Li, Z.; Wu, L.-Y.; Hao, X.-Q.; Song, M.-P. Organometallics 2015, 34,1170.
[19]
(b) Yang, F.-L.; Zhu, X.; Rao, D.-K.; Cao, X.-N.; Li, K.; Xu, Y.; Hao, X.-Q.; Song, M.-P. RSC Adv. 2016, 6,37093.
[19]
(c) Yang, F.-L.; Wang, Y.-H.; Ni, Y.-F.; Gao, X.; Song, B.; Zhu, X.; Hao, X.-Q. Eur. J. Org. Chem. 2017, 2017,3481.
[19]
(d) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83,3657.
[19]
(e) Wan, X.-M.; Liu, Z.-L.; Liu, W.-Q.; Cao, X.-N.; Zhu, X.; Zhao, X.-M.; Song, B.; Hao, X.-Q.; Liu, G. Tetrahedron 2019, 75,2697.
[20]
(a) Kr?hnke, F.; Zecher, W.; Curtze, J.; Drechsler, D.; Pfleghar, K.; Schnalke, K.E.; Weis, C.W. Angew. Chem., nt. Ed. 1962, 1,626.
[20]
(b) Ziegler, M.; Monney, V.; Stoeckli-Evans, H.; Zelewsky, A.V.; Sasaki, I.; Dupic, G.; Daran, J.-C.; Balavoine, G.G. A. J. Chem. Soc., alton Trans. 1999,667.
[20]
(c) Kwong, H.-L.; Lee, W.-S. Tetrahedron: Asymmetry 2000, 11,2299.
[20]
(d) Kwong, H.-L.; Wong, W.-L.; Lee, W.-S.; Cheng, L.-S.; Wong, W.-T. Tetrahedron: Asymmetry 2001, 12,2683.
[20]
(e) Yeung, C.-T.; Lee, W.-S.; Tsang, C.-S.; Yiu, S.-M.; Wong, W.-T.; Wong, W.-Y.; Kwong, H.-L. Polyhedron 2010, 29,1497. 9f4792cc-0a81-4a51-87d5-25fbd71954fd
[21]
(a) Wang, M.; Wang, C.; Hao, X.-Q.; Li, X.; Vaughn, T.J.; Zhang, Y.-Y.; Yu, Y.; Li, Z.-Y.; Song, M.-P.; Yang, H.-B.; Li, X. J. Am. Chem. Soc. 2014, 136,10499. c122bda4-0566-453f-8ded-a52965695c56
[21]
(b) Wang, L.; Liu, R.; Gu, J.; Song, B.; Wang, H.; Jiang, X.; Zhang, K.; Han, X.; Hao, X.-Q.; Bai, S.; Wang, M.; Li, X.; Xu, B.; Li, X. J. Am. Chem. Soc. 2018, 140,14087.
[22]
(a) Zhao, H.-Q.; Ong, W.-Q.; Fang, X.; Zhou, F.; Su, H.-B.; Zeng, H.-Q. Org. Biomol. Chem. 2012, 10,1172.
[22]
(b) Ramogida, C.F.; Schindler, D.; Schneider, C.; Tan, Y.L. K.; Huh, S.; Ferreira, C.L.; Adam, M.J.; Orvig, C. RSC Adv. 2016, 6,103763.
[22]
(c) Gygi, D.; Hwang, S.J.; D.; Nocera, G. J. Org. Chem. 2017, 82,12933.
Outlines

/