ARTICLES

Triethylamine-Catalyzed Cascade Reaction of γ-Hydroxy-α,β-unsaturated Ketones with Trifluoromethyl Ketones via Hemiketal Intermediates

  • Hai Ma ,
  • Guanghao Yu ,
  • Feng Sui ,
  • Miyi Yang ,
  • Li Liu ,
  • Huijie Li ,
  • Feng Li ,
  • Qinghe Zhao
Expand
  • a Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing 100700
    b College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
* Corresponding authors. E-mail: ;

Received date: 2020-10-29

  Revised date: 2020-12-05

  Online published: 2020-12-24

Supported by

Voluntary Program of China Academy of Chinese Medical Sciences(ZZ0908028)

Abstract

Et3N-catalyzed cascade reaction of trifluoromethyl ketones and γ-hydroxy-α,β-unsaturated ketones via hemiketal intermediate is investigated. The adducts could be easily obtained in good to excellent yields with moderate diastereoselectivities. The reaction proceeded smoothly to give the desired product in 92% yield and with 96% ee in the presence of a glycosyl and quinidine-based bifunctional chiral thiourea catalyst.

Cite this article

Hai Ma , Guanghao Yu , Feng Sui , Miyi Yang , Li Liu , Huijie Li , Feng Li , Qinghe Zhao . Triethylamine-Catalyzed Cascade Reaction of γ-Hydroxy-α,β-unsaturated Ketones with Trifluoromethyl Ketones via Hemiketal Intermediates[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1614 -1621 . DOI: 10.6023/cjoc202010040

References

[1]
(a) Royer, J. Asymmetric Synthesis of Nitrogen Heterocycles, Wiley VCH, Wienheim, 2009.
[1]
(b) Vo, C.-V. T.; Luescher, M.U.; Bode, J.W. Nat. Chem. 2014, 6,310.
[1]
(c) Yanai, H. In Green Synthetic Approaches for Biologically Relevant Heterocycles, Ed.: Brahmachari, G., Elsevier, Boston, 2015, pp.257~289.
[1]
(d) Meyer, A.G.; Bissember, A.C.; Hyland, C.J. T.; Williams, C.C.; Szabo, M.; Abel, S.A. G.; Bird, M.J.; Hyland, I.K.; Pham, H. In Progress in Heterocyclic Chemistry, Eds.: Gribble, G. W.; Joule, J.A., Elsevier, Amsterdam, 2018, pp.493~550.
[2]
(a) Yudin, A.K. Aziridines and Epoxides in Organic Synthesis, Wiley-VCH, Weinheim, 2006.
[2]
(b) Kannan, V.; Sreekumar, K.; Gil, A.; Vicente, M.A. Catal. Lett. 2011, 141,1118.
[2]
(c) Lykke, L.; Halskov, K.S.; Carlsen, B.D.; Chen, V.X.; J?rgensen, K.A. J. Am. Chem. Soc. 2013, 135,4692.
[3]
For selected reviews, see: (a) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105,4406.
[3]
(b) Carey, F.A. Organic Chemistry, 6th ed., McGraw-Hill, New York, 2006.
[3]
(c) Sawant, P.; Maier, M.E. Eur. J. Org. Chem., 2012,6576.
[3]
(d) ?ori?, I.; Vellalath, S.; Müller, S.; Cheng, X.; List, B. Top. Organomet. Chem. 2013, 44,165.
[3]
(e) Kim, J.H.; ?ori?, I.; Vellalath, S.; List, B. Angew. Chem., Int. Ed. 2013, 52,4474.
[3]
(f) Nallasivam, J.L.; Fernandes, R.A. Org. Biomol. Chem. 2017, 15,708.
[3]
(g) Yu, X.; Che, Z.; Xu, H. Chem.-Eur. J. 2017, 23,4467.
[3]
(h) Mahto, P.; Rana, N.K.; Shukla, K.; Das, B.G.; Joshi, H.; Singh, V.K. Org. Lett. 2019, 21,5962.
[4]
For selected reviews, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B.; Legros, J. Chem. Soc. Rev. 2005, 34,562.
[4]
(b) Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,320.
[4]
(c) Xie, H.X.; Zhang, Y.; Zhan, S.L.; Cheng, X.B.; Wang, W. Angew. Chem., Int. Ed. 2011, 50,11773.
[4]
(d) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108,PR1.
[4]
(e) Zheng, Y.; Ma, J.-A. Adv. Synth. Catal. 2010, 352,2745.
[4]
(f) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111,455.
[4]
(g) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N. Org. Lett. 2010, 12,5104.
[4]
(h) Wang, T.; Zhang, G.-W.; Teng, Y.; Nie, J.; Zheng, Y.; Ma, J.-A. Adv. Synth. Catal. 2010, 352,2773.
[4]
(i) Zhang, G.-W.; Meng, W.; Ma, H.; Nie, J.; Zhang, W.-Q.; Ma, J.-A. Angew. Chem., Int. Ed. 2011, 50,3538.
[4]
(j) Allen, A.E.; MacMillan, D.W. C. J. Am. Chem. Soc. 2010, 132,4986.
[4]
(k) Kawai, H.; Kitayama, T.; Tokunaga, E.; Shibata, N. Eur. J. Org. Chem. 2011, 30,5959.
[4]
(l) Ma, H.; Matsuzaki, K.; Yang, Y.-D.; Tokunaga, E.; Nakane, D.; Ozawa, T.; Masuda, H.; Shibata, N. Chem. Commun. 2013, 49,11206.
[4]
(m) Wang, J.; Sanchez-Rosello, M.; Ace?a, J.L.; Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Chem. Rev. 2014, 114,2432.
[5]
(a) Wang, J.; Kong, W.-G.; Li, F.; Liu, J.; Shen, Q.; Liu, L.; Zhao, W.-X. Org. Biomol. Chem. 2015, 13,5399.
[5]
(b) Lin, Y.-J.; Du, L.-N.; Kang, T.-R.; Liu, Q.-Z.; Chen, Z.-Q.; He, L. Chem.-Eur. J. 2015, 21,11773.
[5]
(c) Zhu, Y.; Dong, Z.; Cheng, X.; Zhong, X.; Liu, X.; Lin, L.; Shen, Z.; Yang, P.; Li, Y.; Wang, H.; Yan, W.; Wang, R. Org. Lett. 2016, 18,3546.
[6]
(a) Li, F.; Wang, J.-J.; Xu, M.-M.; Zhao, X.-B.; Zhou, X.-H.; Zhao, W.-X.; Liu, L.-T. Org. Biomol. Chem. 2016, 14,3981.
[6]
(b) Liliana, B.-F.; Elodie, B.; Michael, M.; Louis, J.F.; Claire, W.; Jo?lle, P.; Diego, G.-S. Org. Biomol. Chem. 2017, 15,301.
[7]
For reviews on oxy-Michael addition reactions,see: (a) Nising, C. F.; Brase, S. Chem. Soc. Rev. 2008, 37,1218.
[7]
(b) Hartmann, E.; Vyas, D.J.; Oestreich, M. Chem. Commun. 2011, 47,7917.
[7]
(c) Nising, C.F.; Brase, S. Chem. Soc. Rev. 2012, 41,988.
[8]
(a) Li, D.R.; Murugan, A.; Falck, J.R. J. Am. Chem. Soc. 2008, 130,46.
[8]
(b) Wang, H.F.; Yan, L.J.; Wu, Y.; Chen, F. Tetrahedron 2017, 73,2793.
[9]
(a) Asano, K.; Matsubara, S. Org. Lett. 2012, 14,1620.
[9]
(b) Okamura, T.; Asano, K.; Matsubara, S. Chem. Commun. 2012, 48,5076.
[9]
(c) Fukata, Y.; Miyaji, R.; Okamura, T.; Asano, K.; Matsubara, S. Synthesis 2013, 45,1627.
[9]
(d) Yoneda, N.; Hotta, A.; Asano, K.; Matsubara, S. Org. Lett. 2014, 16,6264.
[10]
(a) Fukata, Y.; Asano, K.; Matsubara, S. Chem. Lett. 2013, 42,355.
[10]
(b) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133,16711.
[10]
(c) Miyaji, R.; Asano, K.; Matsubara, S. Org. Lett. 2013, 15,3658.
[11]
(a) Reddy, B.V.; Reddy, S.M.; Swain, M. RSC Adv. 2013, 3,930.
[11]
(b) Reddy, B.V.; Reddy, S.M.; Swain, M.; Dudem, S.; Kalivendib, S.V.; Reddy, C.S. RSC Adv. 2014, 4,9107.
Outlines

/