ACCOUNT

Recent Advances in Ynamide Coupling Reagent

  • Tao Liu ,
  • Silin Xu ,
  • Junfeng Zhao
Expand
  • a Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an 710072
    b College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022
    c School of Science, Xuchang University, Xuchang, Henan 461000
* Corresponding author. E-mail:

Received date: 2020-11-16

  Revised date: 2020-12-11

  Online published: 2020-12-24

Supported by

National Natural Science Foundation of China(21778025); National Natural Science Foundation of China(91853114)

Abstract

Coupling or condensation reagents are compounds that can be used to promote the direct condensation of carboxylic acids with amines or alcohols to furnish amide or ester bond, respectively. Since their discovery, coupling reagents have been widely used in the manufacture of drugs, materials, cosmetics and other fine chemicals containing amide or ester bond. In particular, coupling reagent plays a crucial role in the chemical synthesis of peptides which involves the iterative amide bond formation between proteinogenic α-amino acids. However, current peptide synthesis methods and strategies are mainly relied on the reagents and techniques developed in 1950~1980s, and are reaching a high standard and their inherent limits. For example, the impurities and racemization/epmimerization caused by over activation of conventional coupling reagents have become major concerns of peptide drug manufacture. Moreover, the poor atom economy of the solid phase peptide synthesis results in large amount of chemical waste, and thus posing formidable challenge to the sustainable development. Only disruptive innovations involving new reagents and novel condensation mechanism can solve the notorious issues that plague current peptide synthesis. In this context, our research group disclosed that ynamide could be used as a novel coupling reagent to promote amide and ester bond formation via the condensation of carboxylic acids with amines or alcohols. More importantly, ynamide coupling reagents could also be used for peptide bond formation in a racemization free manner. Herein, the discovery as well as the application of ynamide coupling reagent in the construction of amide and ester bonds is systematically summarized.

Cite this article

Tao Liu , Silin Xu , Junfeng Zhao . Recent Advances in Ynamide Coupling Reagent[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 873 -887 . DOI: 10.6023/cjoc202011022

References

[1]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
[2]
Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
[3]
(a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
[3]
(b) Han, S. Y.; Kim, Y. A. Tetrahedron 2004, 60, 2447.
[3]
(c) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827.
[3]
(d) Hackenberger, C. P.; Schwarzer, D. Angew. Chem., Int. Ed. 2008, 47, 10030.
[3]
(e) de Figueiredo, R.M.; Suppo,, J. S.; Campagne,, J. M. Chem. Rev. 2016, 116, 12029.
[3]
(f) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20, 140.
[3]
(g) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111, 6557.
[3]
(h) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
[3]
(i) Allen, C. L.; Williams, J. M. Chem. Soc. Rev. 2011, 40, 3405.
[4]
(a) Zompra, A. A.; Galanis, A. S.; Werbitzky, O.; Albericio, F. Future Med. Chem. 2009, 1, 361.
[4]
(b) Henninot, A.; Collins, J. C.; Nuss, J. M. J. Med. Chem. 2018, 61, 1382.
[4]
(c) Lau, J. L.; Dunn, M. K. Bioorg. Med. Chem. 2018, 26, 2700.
[5]
Sheehan, J. C.; Hess, G. P. J. Am. Chem. Soc. 1955, 77, 1067.
[6]
Benoiton, N. L.; Chen, F. M. F. J. Chem. Soc.,Chem. Commun. 1981, 543.
[7]
Sheehan, J.; Cruickshank, P.; Boshart, G. J. Org. Chem. 1961, 26, 2525.
[8]
Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett. 1990, 31, 205.
[9]
Carpino, L. A.; El-Faham, A.; Albericio, F. Tetrahedron Lett. 1994, 35, 2279.
[10]
Dourtoglou, V.; Ziegler, J.-C.; Gross, B. Tetrahedron Lett. 1978, 19, 1269.
[11]
Marder, O.; Shvo, Y.; Albericio, F. Chim. Oggi 2002, 20, 37.
[12]
(a) Wehrstedt, K. D.; Wandrey, P. A.; Heitkamp, D. J. Hazard. Mater. 2005, 126, 1.
[12]
(b) Malow, M.; Wehrstedt, K. D.; Neuenfeld, S. Tetrahedron Lett. 2007, 48, 1233.
[13]
Subiros-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Chem.-Eur. J. 2009, 15, 9394.
[14]
Sperry, J. B.; Minteer, C. J.; Tao, J. Y.; Johnson, R.; Duzguner, R.; Hawksworth, M.; Oke, S.; Richardson, P. F.; Barnhart, R.; Bill, D. R.; Giusto, R. A.; Weaver, J. D. Org. Process Res. Dev. 2018, 22, 1262.
[15]
(a) El-Faham, A.; Subiros Funosas, R.; Prohens, R.; Albericio, F. Chem.-Eur. J. 2009, 15, 9404.
[15]
(b) Subiros-Funosas, R.; Acosta, G. A.; El-Faham, A.; Albericio, F. Tetrahedron Lett. 2009, 50, 6200.
[16]
Belleau, B.; Malek, G. J. Am. Chem. Soc. 1968, 90, 1651.
[17]
Paul, R.; Anderson, G. W. J. Am. Chem. Soc. 1960, 82, 4596.
[18]
Kaminski, Z. J.; Kolesinska, B.; Kolesinska, J.; Sabatino, G.; Chelli, M.; Rovero, P.; Blaszczyk, M.; Glowka, M. L.; Papini, A. M. J. Am. Chem. Soc. 2005, 127, 16912.
[19]
Gong, Y. T.; Du, Y. C.; Huang, W. D.; Chen, C. Q.; Ge, L. T.; Hu, J. Y.; Niu, S. Q.; Xu, J. C.; Zhang, W. J.; Chen, L. L.; Li, H. X.; Wang, Y.; Lu, D. P.; Ji, A. X.; Li, C. X.; Shi, B. T.; Ye, Y. H.; Tang, K. L.; Xing, Q. Y. Chin. Sci. Bull. 1965, 16, 941. (in Chinese)
[19]
(龚岳亭, 杜雨苍, 黄惟德, 陈常庆, 葛麟俊, 胡世全, 蒋荣庆, 朱尚权, 钮经义, 徐杰诚, 张伟君, 陈玲玲, 李鸿绪, 汪猷, 陆德培, 季爱雪, 李崇熙, 施溥涛, 叶蕴华, 汤卡罗, 邢其毅, 科学通报, 1965, 16, 941.)
[20]
(a) Li, P.; Xu, J. C. Tetrahedron Lett. 1999, 40, 3605.
[20]
(b) Li, P.; Xu, J. C. Tetrahedron 2000, 56, 4437.
[20]
(c) Li, P.; Xu, J. C. J. Pept. Res. 2001, 58, 129.
[21]
Hamuro, Y.; Scialdone, M. A.; DeGrado, W. F. J. Am. Chem. Soc. 1999, 121, 1636.
[22]
(a) Zheng, J. S.; Tang, S.; Huang, Y. C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
[22]
(b) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
[22]
(c) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
[22]
(d) Li, J. B.; Tang, S.; Zheng, J. S.; Tian, C. L.; Liu, L. Acc. Chem. Res. 2017, 50, 1143.
[22]
(e) Zhang, B.; Deng, Q.; Zuo, C.; Yan, B.; Zuo, C.; Cao, X. X.; Zhu, T. F.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2019, 58, 12231.
[23]
(a) Zhang, Y.; Xu, C.; Lam, H. Y.; Lee, C. L.; Li, X. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 6657.
[23]
(b) Li, X.; Lam, H. Y.; Zhang, Y.; Chan, C. K. Org. Lett. 2010, 12, 1724.
[23]
(c) Wong, C. T. T.; Lam, H. Y.; Song, T.; Chen, G.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 10212.
[23]
(d) Lee, C. L.; Liu, H.; Wong, C. T. T.; Chow, H. Y.; Li, X. J. Am. Chem. Soc. 2016, 138, 10477.
[23]
(e) Liu, H.; Li, X. Acc. Chem. Res. 2018, 51, 1643.
[24]
(a) Cai, H.; Chen, M.-S.; Sun, Z.-Y.; Zhao, Y.-F.; Kunz, H.; Li, Y.-M. Angew. Chem. Int. Ed. 2013, 52, 6106.
[24]
(b) Cai, H.; Sun, Z. Y.; Chen, M. S.; Zhao, Y. F.; Kunz, H.; Li, Y. M. Angew. Chem., Int. Ed. 2014, 53, 1699.
[24]
(c) Huang, Z. H.; Shi, L.; Ma, J. W.; Sun, Z. Y.; Cai, H.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. J. Am. Chem. Soc. 2012, 134, 8730.
[24]
(d) He, Y. H.; Li, Y. M.; Chen, Y. X. Talanta 2016, 150, 340.
[24]
(e) Zhang, S. Y.; Sperlich, B.; Li, F. Y.; Al-Ayoubi, S.; Chen, H. X.; Zhao, Y. F.; Li, Y. M.; Weise, K.; Winter, R.; Chen, Y. X. ACS Chem. Biol. 2017, 12, 1703.
[25]
(a) Gui, Y.; Qiu, L.; Li, Y.; Li, H.; Dong, S. J. Am. Chem. Soc. 2016, 138, 4890.
[25]
(b) Chen, X.; Ye, F.; Luo, X.; Liu, X.; Zhao, J.; Wang, S.; Zhou, Q.; Chen, G.; Wang, P. J. Am. Chem. Soc. 2019, 141, 18230.
[25]
(c) Zhang, X.; Lu, G.; Sun, M.; Mahankali, M.; Ma, Y.; Zhang, M.; Hua, W.; Hu, Y.; Wang, Q.; Chen, J.; He, G.; Qi, X.; Shen, W.; Liu, P.; Chen, G. Nat. Chem. 2018, 10, 540.
[25]
(d) Li, B.; Li, X.; Han, B.; Chen, Z.; Zhang, X.; He, G.; Chen, G. J. Am. Chem. Soc. 2019, 141, 9401.
[25]
(e) Lu, S.; Wu, Y.; Li, J.; Meng, X.; Hu, C.; Zhao, Y.; Wu, C. J. Am. Chem. Soc. 2020, 142, 16285.
[25]
(f) Yin, Y.; Fei, Q.; Liu, W.; Li, Z.; Suga, H.; Wu, C. Angew. Chem., Int. Ed. 2019, 58, 4880.
[25]
(g) Zheng, Y.; Meng, X.; Wu, Y.; Zhao, Y.; Wu, C. Chem. Sci. 2018, 9, 569.
[25]
(h) Zhan, B. B.; Li, Y.; Xu, J. W.; Nie, X. L.; Fan, J.; Jin, L.; Shi, B. F. Angew. Chem., Int. Ed. 2018, 57, 5858.
[25]
(i) Zhan, B.-B.; Fan, J.; Jin, L.; Shi, B.-F. ACS Catal. 2019, 9, 3298.
[25]
(j) Wang, C.; Guo, M.; Qi, R.; Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 57, 15841.
[25]
(k) Wang, C.; Qi, R.; Xue, H.; Shen, Y.; Chang, M.; Chen, Y.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2020, 59, 7461.
[25]
(l) Bai, Z.; Cai, C.; Yu, Z.; Wang, H. Angew. Chem., Int. Ed. 2018, 57, 13912.
[25]
(m) Tang, J.; Chen, H.; He, Y.; Sheng, W.; Bai, Q.; Wang, H. Nat. Commun. 2018, 9, 3383.
[25]
(n) Yin, H.; Zheng, M.; Chen, H.; Wang, S.; Zhou, Q.; Zhang, Q.; Wang, P. J. Am. Chem. Soc. 2020, 142, 14201.
[25]
(o) Wang, C.; Guo, M.; Qi, R.; Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z., Angew. Chem., Int. Ed. 2018, 57, 15841.
[25]
(p) Wang, C.; Qi, R.; Xue, H.; Shen, Y.; Chang, M.; Chen, Y.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2020, 59, 7461.
[26]
(a) Li, H.; Chao, J.; Hasan, J.; Tian, G.; Jin, Y.; Zhang, Z.; Qin, C. J. Org. Chem. 2020, 85, 6271.
[26]
(b) Li, H. D.; Chao, J.; Tian, G.; Hasan, J.; Jin, Y. T.; Zhang, Z. X.; Qin, C. G. Org. Chem. Front. 2020, 7, 689.
[26]
(c) Li, H.; Chao, J.; Zhang, Z.; Tian, G.; Li, J.; Chang, N.; Qin, C. Org. Lett. 2020, 22, 3323.
[27]
(a) Tian, J.; Gao, W.-C.; Zhou, D.-M.; Zhang, C. Org. Lett. 2012, 14, 3020.
[27]
(b) Zhang, C.; Liu, S.-S.; Sun, B.; Tian, J. Org. Lett. 2015, 17, 4106.
[28]
(a) Zhang, B.; Li, Y.; Shi, W.; Wang, T.; Zhang, F.; Liu, L. Chem. Res. Chin. Univ. 2020, 36, 733.
[28]
(b) Dawson, P.; Muir, T.; Clark-Lewis, I.; Kent, S. Science 1994, 266, 776.
[28]
(c) Kent, S. B. Chem. Soc. Rev. 2009, 38, 338.
[28]
(d) Jin, K.; Li, X. Chem.-Eur. J. 2018, 24, 17397.
[28]
(e) Zheng, J.-S.; Tang, S.; Huang, Y.-C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
[28]
(f) Rohde, H.; Seitz, O. Biopolymers 2010, 94, 551.
[28]
(g) Yang, R.; Pasunooti, K. K.; Li, F.; Liu, X. W.; Liu, C. F. J. Am. Chem. Soc. 2009, 131, 13592.
[28]
(h) Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargo?t, M.; Monbaliu, J.-C. M.; Melnyk, O. Chem. Rev. 2019, 119, 7328.
[28]
(i) Yang, J.; Zhao, J. Sci. China: Chem. 2018, 61, 97.
[29]
Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
[30]
(a) Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247.
[30]
(b) Zheng, J.-S.; Yu, M.; Qi, Y.-K.; Tang, S.; Shen, F.; Wang, Z.-P.; Xiao, L.; Zhang, L.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
[31]
Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
[32]
(a) Wang, T.; Yuan, L.; Zhao, Z. G.; Shao, A. L.; Gao, M.; Huang, Y. F.; Xiong, F.; Zhang, H. L.; Zhao, J. F. Green Chem. 2015, 17, 2741.
[32]
(b) Zhao, Z. G.; Wang, T.; Yuan, L.; Hu, X.; Xiong, F.; Zhao, J. F. Adv. Synth. Catal. 2015, 357, 2566.
[32]
(c) Zhao, Z. G.; Wang, T.; Yuan, L.; Jia, X. W.; Zhao, J. F. RSC Adv. 2015, 5, 75386.
[33]
Arens, J. F. Recl. Trav. Chim. Pays-Bas 1955, 74, 769.
[34]
(a) Kita, Y.; Akai, S.; Ajimura, N.; Yoshigi, M.; Tsugoshi, T.; Yasuda, H.; Tamura, Y. J. Org. Chem. 1986, 51, 4150.
[34]
(b) Krause, T.; Baader, S.; Erb, B.; Goossen, L. J. Nat. Commun. 2016, 7, 11732.
[34]
(c) Wasserman, H. H.; Wharton, P. S. Tetrahedron 1958, 3, 321.
[34]
(d) Kita, Y.; Maeda, H.; Omori, K.; Okuno, T.; Tamura, Y. Synlett 1993,273.
[34]
(e) Wasserman, H. H.; Wharton, P. S. J. Am. Chem. Soc. 1960, 82, 661.
[35]
Buijle, R.; Viehe, H. G. Angew. Chem., Int. Ed. 1964, 3, 582.
[36]
Gais, H.-J. Angew. Chem., Int. Ed. 1978, 17, 597.
[37]
Lienhard, U.; Fahrni, H.-P.; Neuenschwander, M. Helv. Chim. Acta. 1978, 61, 1609.
[38]
Viehe, H. G.; van Vyve, T.; Janousek, Z. Angew. Chem., Int. Ed. 1972, 11, 916.
[39]
(a) Huang, B.; Zeng, L.; Shen, Y.; Cui, S. Angew. Chem., Int. Ed. 2017, 56, 4565.
[39]
(b) Zeng, L.; Lin, Y.; Li, J.; Sajiki, H.; Xie, H.; Cui, S. Nat. Commun. 2020, 11, 5639.
[39]
Zeng, L.; Cui, S. Chin. J. Org. Chem. 2020, 40, 2353. (in Chinese)
[39]
(曾林伟, 崔孙良, 有机化学, 2020, 40, 2353.)
[39]
(d) Shu, C.; Wang, Y. H.; Zhou, B.; Li, X. L.; Ping, Y. F.; Lu, X.; Ye, L. W. J. Am. Chem. Soc. 2015, 137, 9567.
[39]
(e) Hong, F. L.; Chen, Y. B.; Ye, S. H.; Zhu, G. Y.; Zhu, X. Q.; Lu, X.; Liu, R. S.; Ye, L. W. J. Am. Chem. Soc. 2020, 142, 7618.
[39]
(f) Hong, F. L.; Ye, L. W. Acc. Chem. Res. 2020, 53, 2003.
[39]
(g) Wang, Z. S.; Chen, Y. B.; Zhang, H. W.; Sun, Z.; Zhu, C.; Ye, L. W. J. Am. Chem. Soc. 2020, 142, 3636.
[39]
(h) Ye, L. W.; Zhu, X. Q.; Sahani, R. L.; Xu, Y.; Qian, P. C.; Liu, R. S. Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.0c00348.
[40]
(a) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[40]
(b) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[40]
(c) Chen, Y. B.; Qian, P. C.; Ye, L. W. Chem. Soc. Rev. 2020, 49, 8897.
[41]
Smith, D. L.; Goundry, W. R.; Lam, H. W. Chem. Commun. 2012, 48, 1505.
[42]
Xu, S.; Liu, J.; Hu, D.; Bi, X. Green Chem. 2015, 17, 184.
[43]
Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am. Chem. Soc. 2016, 138, 13135.
[44]
Chang, H. N.; Liu, B. Y.; Qi, Y. K.; Zhou, Y.; Chen, Y. P.; Pan, K. M.; Li, W. W.; Zhou, X. M.; Ma, W. W.; Fu, C. Y.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2015, 54, 11760.
[45]
(a) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. 1978, 17, 522.
[45]
(b) Fischer, E.; Speier, A. Ber. Dtsch. Chem. Ges. 1895, 28, 3252.
[45]
(c) Tu, Y.; Yuan, L.; Wang, T.; Wang, C.; Ke, J.; Zhao, J. J. Org. Chem. 2017, 82, 4970.
[45]
(d) De, Sarkar, S.; Grimme,, S.; Studer,, A. J. Am. Chem. Soc. 2010, 132, 1190.
[45]
(e) Ogawa, H.; Chihara, T.; Taya, K. J. Am. Chem. Soc. 1985, 107, 1365.
[45]
(f) Xu, T.; Alper, H. J. Am. Chem. Soc. 2014, 136, 16970.
[45]
(g) Ishihara, K.; Ohara, S.; Yamamoto, H. Science 2000, 290, 1140.
[46]
Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. J. Org. Chem. 2020, 85, 6188.
[47]
Parenty, A.; Moreau, X.; Niel, G.; Campagne, J. M. Chem. Rev. 2013, 113, PR1.
[48]
Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
[49]
(a) Furstner, A.; Bouchez, L. C.; Funel, J. A.; Liepins, V.; Poree, F. H.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Angew. Chem., Int. Ed. 2007, 46, 9265.
[49]
(b) Furstner, A.; Aissa, C.; Chevrier, C.; Teply, F.; Nevado, C.; Tremblay, M. Angew. Chem., Int. Ed. 2006, 45, 5832.
[49]
(c) Zhuo, C. X.; Furstner, A. Angew. Chem., Int. Ed. 2016, 55, 6051.
[50]
Yang, M.; Wang, X. W.; Zhao, J. F. ACS Catal. 2020, 10, 5230.
[51]
Cochrane, J. R.; Yoon, D. H.; McErlean, C. S.; Jolliffe, K. A. Beilstein J. Org. Chem. 2012, 8, 1344.
[52]
(a) Mahanta, N.; Szantai-Kis, D. M.; Petersson, E. J.; Mitchell, D. A. ACS Chem. Biol. 2019, 14, 142.
[52]
(b) Müller, M. M. Biochemistry 2018, 57, 177.
[53]
(a) Clausen, K.; Spatola, A. F.; Lemieux, C.; Schiller, P. W.; Lawesson, S. O. Biochem. Biophys. Res. Commun. 1984, 120, 305.
[53]
(b) Seebach, D.; Ko, S. Y.; Kessler, H.; K?ck, M.; Reggelin, M.; Schmieder, P.; Walkinshaw, M. D.; B?lsterli, J. J.; Bevec, D. Helv. Chim. Acta 1991, 74, 1953.
[53]
(c) Yao, S.; Zutshi, R.; Chmielewski, J. Bioorg. Med. Chem. Lett. 1998, 8, 699.
[54]
Szantai-Kis, D.; Walters, C.; Barrett, T.; Hoang, E.; Petersson, E. Synlett 2017, 28, 1789.
[55]
Kato, S.; Akada, W.; Mizuta, M.; Ishii, Y. Bull. Chem. Soc. Jpn. 1973, 46, 244.
[56]
(a) Hoeeg-Jensen, T.; Olsen, C. E.; Holm, A. J. Org. Chem. 1994, 59, 1257.
[56]
(b) H?eg-Jensen, T.; Havsteen Jakobsen, M.; Olsen, C. E.; Holm, A. Tetrahedron Lett. 1991, 32, 7617.
[57]
Yang, J.; Wang, C.; Xu, S.; Zhao, J. Angew. Chem., Int. Ed. 2019, 58, 1382.
[58]
Mukherjee, S.; Verma, H.; Chatterjee, J. Org. Lett. 2015, 17, 3150.
[59]
Yang, J.; Wang, C.; Yao, C.; Chen, C.; Hu, Y.; He, G.; Zhao, J. J. Org. Chem. 2020, 85, 1484.
[60]
Jones, B. A.; Bradshaw, J. S. Chem. Rev. 1984, 84, 17.
[61]
(a) Cerda, M. M.; Newton, T. D.; Zhao, Y.; Collins, B. K.; Hendon, C. H.; Pluth, M. D. Chem. Sci. 2019, 10, 1773.
[61]
(b) Cerda, M. M.; Zhao, Y.; Pluth, M. D. J. Am. Chem. Soc. 2018, 140, 12574.
[62]
Yao, C.; Yang, J.; Lu, X.; Zhang, S.; Zhao, J. Org. Lett. 2020, 22, 6628.
[63]
Evano, G.; Blanchard, N.; Compain, G.; Coste, A.; Demmer, C. S.; Gati, W.; Guissart, C.; Heimburger, J.; Henry, N.; Jouvin, K.; Karthikeyan, G.; Laouiti, A.; Lecomte, M.; Martin-Mingot, A.; Metayer, B.; Michelet, B.; Nitelet, A.; Theunissen, C.; Thibaudeau, S.; Wang, J. J.; Zarca, M.; Zhang, C. Y. Chem. Lett. 2016, 45, 574.
[64]
Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
[65]
(a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489.
[65]
(b) Rainier, J. D.; Imbriglio, J. E. Org. Lett. 1999, 1, 2037.
[65]
(c) Witulski, B.; Lumtscher, J.; Bergstrasser, U. Synlett 2003,708.
[66]
Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2009, 48, 4381.
[67]
(a) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. Org. Lett. 2018, 20, 280.
[67]
(b) Zeng, X.; Tu, Y.; Zhang, Z.; You, C.; Wu, J.; Ye, Z.; Zhao, J. J. Org. Chem. 2019, 84, 4458.
[68]
Song, Q.; Kong, L.; Zhu, L.; Hong, R.; Huang, S. H. Chin. J. Chem. 2020, 39, 1022.
Outlines

/