REVIEWS

Application on the Construction of Imidazo[1,2-a]pyridines C-3 Canbon-Hetero Bonds by Visible-Light Catalysis and Electrochemistry

  • Xiang Liu ,
  • Wen Li ,
  • Huanyu Liu ,
  • Hua Cao
Expand
  • 1 Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458
* Corresponding authors. E-mail: ;

Received date: 2020-12-16

  Revised date: 2021-01-11

  Online published: 2021-02-07

Supported by

National Natural Science Foundation of China(22001045); Innovation and Strong School Project of Guangdong Pharmaceutical University(2019KQNCX061); Special Funds of Key Disciplines Construction from Guangdong and Zhongshan Cooperating

Abstract

Imidazo[1,2-a]pyridines are a special nitrogen-containing compounds, which play an important role in the fields of pesticides biomedicine, optical and electrical materials. In recent years, the synthesis of functional imidazo[1,2-a]pyridines has become a hot topic for organic scientists and pharmaceutical chemists, and great progress has been made. Among them, the synthesis of functionalized imidazo[1,2-a]pyridines via visible-light catalysis and electrochemistry based on green chemistry has become the powerful tool for the synthesis of these compounds. Based on the types of canbon-hetero bonds of imidazo- [1,2-a]pyridines, the research on the construction of imidazo[1,2-a]pyridines C-3 canbon-hetero bonds by visible-light catalysis and electrochemical synthesis in recent 5 years is summarized.

Cite this article

Xiang Liu , Wen Li , Huanyu Liu , Hua Cao . Application on the Construction of Imidazo[1,2-a]pyridines C-3 Canbon-Hetero Bonds by Visible-Light Catalysis and Electrochemistry[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1759 -1773 . DOI: 10.6023/cjoc202012026

References

[1]
Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis 2015, 47, 887.
[2]
Fu, R. G.; You, Q. D.; Yang, L.; Wu, W. T.; Jiang, C.; Xu, X. L. Bioorg. Med. Chem. Lett. 2010, 18, 8035.
[3]
Zhou, J. P.; Ding, Y. W.; Zhang, H. B.; Xu, L.; Dai, Y. Chin. Chem. Lett. 2008, 19, 669.
[4]
Kaminski, J. J.; Doweyko, A. M. J. Med. Chem. 1997, 40, 427.
[5]
Kotavskaya, S. K.; Baskakova, Z. M. Pharm. Chem. J. 2005, 39, 574.
[6]
(a) Rupert, K. C.; Henry, J. R.; Dodd, J. H.; Wadsworth, S. A.; Cavender, D. E.; Olini, G. C.; Fahmy, B.; Siekierka, J. J. Bioorg. Med. Chem. Lett. 2003, 13, 347.
[6]
(b) Zhao, X. Y.; Ding, Y. Y.; Lv, Y. C.; Kang, C. M. Chin. J. Org. Chem. 2019, 39, 1304. (in Chinese).
[6]
(赵鑫雨, 丁扬扬, 吕英涛, 康从民, 有机化学, 2019, 39, 1304.)
[7]
Katrun, P.; Kuhakarn, C. Tetrahedron Lett. 2019, 60, 989.
[8]
Enguehard, C.; Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888.
[9]
(a) Xu, X.; Chen, D.; Wang, Z. Chin. J. Org. Chem. 2019, 39, 3338. (in Chinese).
[9]
(徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.)
[9]
(b) Tashrifi, Z.; Mohammadi-Khanaposhtani, M.; Larijani, B.; Mahdavi, M. Eur. J. Org. Chem. 2020, 2020, 269.
[9]
(c) Bagdi, A. K.; Hajra, A. Org. Biomol. Chem. 2020, 18, 2611.
[9]
(d) Jin, C. A.; Xu, Q.; Feng, G. F.; Jin, Y.; Zhang, L. Y. Chin. J. Org. Chem. 2018, 38, 775. (in Chinese).
[9]
(金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.)
[10]
Tashrifi, Z.; Mohammadi-Khanaposhtani, M.; Larijani, B.; Mahdavi, M. Eur. J. Org. Chem. 2020, 3, 269.
[11]
He, K. H.; Tan, F. F.; Zhou, C. Z.; Zhou, G, J.; Yang, X. L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.
[12]
Wang, H. M.; Gao, X. L.; Lv, Z. C.; Abdelilah, T.; Lei, A. W. Chem. Rev. 2019, 119, 6769.
[13]
Yu, X. Y.; Chen, J. R.; Xiao, W. J. Chem. Rev. 2021, 121, 506.
[14]
Mcatee, R. C.; Mcclain, E. J.; Stephenson, C. R. J. Trends Chem. 2019, 1, 111.
[15]
Wang, H.; Xu, W.; Xin, L.; Liu, W. M.; Wang, Z. Q.; Xu, K. J. Org. Chem. 2016, 81, 3681.
[16]
Cui, Z. M.; Zhu, B. F.; Li, X. C.; Cao, H. Org. Chem. Front. 2018, 5, 2219.
[17]
Yu, Y.; Su, Z. Q.; Cao, H. Chem. Rec. 2019, 19, 2105.
[18]
Cao, H.; Lei, S.; Li, N. Y.; Chen, L. B.; Liu, J. Y.; Cai, H. Y.; Qiu, S. X.; Tan, J. W. Chem. Commun. 2015, 51, 1823.
[19]
Lei, S.; Cao, H.; Chen, L. B.; Liu, J. Y.; Cai, H. Y.; Tan, J. W. Adv. Synth. Catal. 2015, 357, 3109.
[20]
ChinthakindiHI, P. K.; Naicker, T.; Thota, N.; Govender, T.; Kruger, H. G.; Arvidsson, P. I. Angew. Chem., Int. Ed. 2017, 56, 4100.
[21]
Gao, Y. Y.; Chen, S.; Lu, W. Y.; Gu, W. J.; Liu, P.; Sun, P. P. Org. Biomol. Chem. 2017, 15, 8102.
[22]
Samanta, S.; Ravi, C.; Rao, S. N.; Joshi, A.; Adimurthy, S. Org. Biomol. Chem. 2017, 15, 9590.
[23]
Chen, H.; Yi, H.; Tang, Z. L.; Bian, C. L.; Zhang, H.; Lei, A. W. Adv. Synth. Catal. 2018, 360, 3220.
[24]
Sana, S.; Santos, C. R. D.; Zavarise, B. R.; Naujorks, A. A. S.; Franco, M. S. F.; Schneider, A. R.; Scheide, M. R.; Affeldt, R. F.; Rafique, J.; Braga, A. L. Chem.-Eur. J. 2020, 26, 4461.
[25]
Kibriya, G.; Samanta, S.; Jana, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2017, 82, 13722.
[26]
Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 8275.
[27]
Sun, P. F.; Yang, D. S.; Wei, W.; Jiang, M.; Wang, Z. L.; Zhang, L. Y.; Zhang, H.; Zhang, Z. Z.; Wang, Y.; Wang, H. Green Chem. 2017, 19, 4785.
[28]
Rahaman, R.; Das, S.; Barman, P. Green. Chem. 2018, 20, 141.
[29]
Breton-Patien, C.; Naud-Martin, D.; Mahuteau-Betzer, F.; Piguel, S. Eur. J. Org. Chem. 2020, 42, 6653.
[30]
Lee, J. H.; Jung, H. I.; Kim, D. Y. Synth. Commun. 2018, 50, 197.
[31]
Saba, S.; Rafique, J.; Franco, M.; Schneider, A. R.; Espíndola, L.; Silva, D. O.; Braga, A. Org. Biomol. Chem. 2018, 16, 880.
[32]
Kumaraswamy, G.; Rammesh, V.; Gangadhar, M.; Vijaykumar, S. Asian J. Org. Chem. 2018, 7, 1689.
[33]
Gao, F.; Sun, K.; Chen, X. L.; Shi, T.; Li, X. Y.; Qu, L. B.; Zhao, Y. F.; Yu, B. J. Org. Chem. 2020, 85, 14744.
[34]
Yu, Y.; Yuan, Y.; Lin, H. L.; He, M.; Liu, P.; Yu, B. Y.; Dong, X. C.; Lei, A. W. Chem. Commun. 2019, 55, 1809.
[35]
Liu, K.; Wu, J. R.; Deng, Y. Q.; Song, C. L.; Song, W. X.; Lei, A. W. ChemElectroChem 2019, 6, 4173.
[36]
Yuan, Y.; Cao, Y. M.; Qiao, J.; Lin, Y. P.; Jiang, X. M.; Wen, Y. Q.; Tang, S.; Lei, A. W. Chin. J. Chem. 2019, 37, 49.
[37]
Wen, J. W.; Niu, C.; Yan, K. L.; Cheng, X. D.; Gong, R. K.; Li, M. Q.; Gao, Y. Q.; Yang, J. J.; Wang, H. Green Chem. 2020, 22, 1129.
[38]
Cui, T.; Zhang, X. F.; Lin, J.; Zhu, Z. T.; Liu, P.; Sun, P. P. Synlett 2021, 32, 267.
[39]
Kim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2019, 10, 739.
[40]
Yuan, Y.; Yao, A. J.; Zheng, Y. F.; Gao, M.; Zhou, Z. L.; Qiao, J.; Hu, J. J.; Ye, B. Q.; Zhao, J.; Wen, H. L.; Lei, A. W. iScience 2019, 12, 293.
[41]
Park, J. W.; Kim, Y. H.; Kim, D. Y. Synth. Commum. 2020, 50, 710.
[42]
Yuan, Y.; Qiao, J.; Cao, Y. M.; Tang, J. M.; Wang, M. Q.; Ke, G. J.; Lu, Y. C.; Liu, X.; Lei, A. W. Chem. Commun. 2019, 55, 4230.
Outlines

/