ARTICLES

Synthesis and Antioxidant Properties of Pyrazine-Thiazole Bi-heteroaryl Compounds

  • Xiaoping Zhang ,
  • Guiyong Jin ,
  • Zhifei Chen ,
  • Qingfu Wang ,
  • Sensen Zhao ,
  • Zhiyong Wu ,
  • Shuai Wan ,
  • Gaolei Xi ,
  • Xu Zhao
Expand
  • a College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002
    b Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000

Received date: 2020-11-09

  Revised date: 2021-01-11

  Online published: 2021-02-22

Supported by

Young Talents Program of Henan Agricultural University(30500602)

Abstract

In order to find novel pyrazine- and thiazole-based derivatives with potent antioxidant properties, eight pyrazine-thiazole bi-heteroaryl compounds were designed and prepared via active group splicing method between pyrazine-N- oxides and thiazoles. They were structurally characterized by 1H NMR, 13C NMR, IR, and HPLC-MS. Antioxidant abilities of the obtained compounds were evaluated by inhibiting radicals induced oxidation of DNA and quenching radicals. The results showed that eight compounds can effectively inhibit radicals induced oxidation of DNA and quench radicals, which revealed that the compounds have strong radical scavenging properties and reduction ability, and can be potential antioxidants. The effective measurement factor (n) values of these compounds ranged from 1.48 to 2.12 in 2,2-azobis(2-amidinopropanehydro- chloride) (AAPH) induced oxidation of DNA. The absorbance percentages of eight compounds to the blank thiobarbituric acid reactive substance (TBARS percentage) were 54.3%~76.1% and 55.4%~68.3% in inhibiting HO• and glutathione radical (GS•) induced oxidation of DNA, respectively. Eight compounds can scavenge 2,2-azinobis(3-ethylbenzothiazoline-6-sul- fonate) cationic radical (ABTS•) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). In addition, it was found that the antioxidant activity of pyrazine-thiazole bi-heteroaryl compounds was significantly higher than that of pyrazine-oxazole bi-heteroaryl compound.

Cite this article

Xiaoping Zhang , Guiyong Jin , Zhifei Chen , Qingfu Wang , Sensen Zhao , Zhiyong Wu , Shuai Wan , Gaolei Xi , Xu Zhao . Synthesis and Antioxidant Properties of Pyrazine-Thiazole Bi-heteroaryl Compounds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(6) : 2445 -2453 . DOI: 10.6023/cjoc202011013

References

[1]
(a) Abu-Hashem, A. A.; El-Shazly, M. Med. Chem. 2018, 14,356.
[1]
(b) Zaki, R. M.; Kamal El-Dean, A. M.; Radwan, S. M.; Abdul-Malik, M. A. Curr. Org. Synth. 2018, 6,863.
[1]
(c) Shankar, B.; Jalapathi, P.; Valeru, A.; Kumar, A. K.; Saikrishna, B.; Kudle, K. R. Med. Chem. Res. 2017, 26,1835.
[2]
(a) Srinivasa, S. B.; Poojary, B.; Brahmavara, U.; Das, A. J.; Middha, S. K. ChemistrySelect 2018, 44.12478.
[2]
(b) Sinha, S.; Doble, M.; Manju, S. L. Eur. J. Med. Chem. 2018, 158,34.
[2]
(c) Rajendran, N. D.; Stephen, A. D.; Jelsch, C.; Escudero-Adan, E. C. Croat. Chem. Acta 2018, 2,221.
[2]
(d) Leleu-Chavain, N.; Baudelet, D.; Heloire, V. M.; Rocha, D. E.; Renault, N.; Barczyk, A.; Djouina, M.; Body-Malapel, M.; Carato, P.; Millet, R. Eur. J. Med. Chem. 2019, 165,347.
[3]
(a) Kusstatscher, P.; Cernava, T.; Liebminger, S.; Berg, G. Sci. Rep. 2017, 7,13253.
[3]
(b) Zitko, J.; Dolezal, M.; Svobodova, M.; Vejsova, M.; Kunes, J.; Kucera, R.; Jilek, P. Bioorg. Med. Chem. 2011, 19,1471.
[4]
(a) Reddy, N. B.; Zyryanov, G. V.; Reddy, G. M.; Balakrishna, A.; Padmaja, A.; Padmavathi, V.; Reddy, C. S.; Garcia, J. R.; Sravya, G. J. Heterocycl. Chem. 2019, 2,589.
[4]
(b) Masood, M. M.; Irfan, M.; Alam, S.; Hasan, P.; Queen, A.; Shahid, S.; Zahid, M.; Azam, A.; Abid, M. Russ. Lett. Drug. Des. Discovery 2019, 2,160.
[4]
(c) Panchani, N. M.; Joshi, H. S. Russ. Lett. Drug. Des. Discovery 2019, 3,284.
[4]
(d) Edrees, M. M.; Abu-Melha, S.; Saad, A. M.; Kheder, N. A.; Gomha, S. M.; Muhammad, Z. A. Molecules 2018, 11,2970.
[5]
Gabr, I. M.; El-Asmy, H. A.; Emmam, M. S.; Mostafa, S. I. Transition Metal. Chem. 2009, 34,409.
[6]
(a) Sharma, A.; Gudala, S.; Ambati, S. R.; Mahapatra, S. P.; Raza, A.; Aruna, L. V.; Payra, S.; Jha, A.; Kumar, A.; Penta, S. Chemistry- Select 2018, 39,11012.
[6]
(b) Bhatt, P.; Kumar, M.; Jha, A. Mol. Diversity 2018, 4,827.
[6]
(c) Biswas, N. M.; Shard, A.; Patel, S.; Sengupta, P. Drug Dev. Res. 2018, 8,391.
[6]
(d) Zhang, Z. H.; Wu, H. M.; Deng, S. N.; Chai, R. X.; Mwenda, M. C.; Peng, Y. Y.; Cai, D.; Chen, Y. Chem. Pap. 2019, 2,355.
[7]
Kucerova-Chlupacova, M.; Dosedel, M.; Kunes, J.; Soltesova- Prnova, M.; Majekova, M.; Stefek, M. Monatsh. Chem. 2018, 149,921.
[8]
(a) Uremis, N.; Uremis, M. M.; Tolun, F. I.; Ceylan, M.; Doganer, A.; Kurt, A. H. J. Anticancer. Res. 2017, 11,6381.
[8]
(b) Parasotas, I.; Anusevicius, K.; Vaickelioniene, R.; Jonuskiene, I.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavets, O.; Novikov, V.; Belyakov, S.; Mickevicius, V. ARKIVOC 2018, 3,240.
[8]
(c) Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V. T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B. Chem.-Biol. Interact. 2018, 286,119.
[9]
(a) Sebastian, S. H. R.; Al-Alshaikh, M. A.; El-Emam, A. A.; Panicker, C. Y.; Zitko, J.; Dolezal, M.; VanAlsenoy, C. J. Mol. Struct. 2016, 1119 188.
[9]
(b) Wu, H. M.; Zhou, K.; Wu, T.; Cao, Y. G. Chem. Biol. Drug Des. 2016, 88,411.
[10]
(a) Wang, Y. Y.; Wu, C. L.; Zhang, Q. J.; Shan, Y.; Gu, W.; Wang, S. F. Bioorg. Chem. 2019, 84,468.
[10]
(b) George, R. F.; Samir, E. M.; Abdelhamed, M. N.; Abdel-Aziz, H. A.; Abbas, S. E. S. Bioorg. Chem. 2019, 83,186.
[10]
(c) Prajapati, N. P.; Patel, K. D.; Vekariya, R. H.; Patel, H. D.; Rajani, D. P. J. Mol. Struct. 2019, 1179 401.
[11]
(a) Khake, S. M.; Soni, V.; Gonnade, R. G.; Punji, B.; Dalton Trans. 2014, 43,16084.
[11]
(b) Dowlut, M.; Mallik, D.; Organ, M. G. Chem.-Eur. J. 2010, 16,4279.
[12]
(a) Pandey, D. K.; Khake, S. M.; Gonnade, R. G.; Punji, B. RSC Adv. 2015, 5,81502.
[12]
(b) Khake, S. M.; Jagtap, R. A.; Dangat, Y. B.; Gonnade, R. G.; Vanka, K.; Punji, B. Organometallics 2016, 35,875.
[13]
Wu, Z. Y.; Chang, C. C.; Tang, X. T.; Liu, S.; Xi, G. L.; Zhao, M. Q.; Liu, P. F. ChemistrySelect 2018, 3,13038.
[14]
Zhang, X. P.; Chen, Z. F.; Han, L. Fine Chem. 2020, 37:1461.
[15]
Xiao, C.; Song, Z. G.; Liu, Z. Q. Eur. J. Med. Chem. 2010, 45:2559.
[16]
Stojanoić, S.; Brede, O. Phys. Chem. Chem. Phys. 2002, 4,757.
[17]
Xi, G. L.; Liu, Z. Q. J. Agric. Food Chem. 2015, 63,3516.
[18]
(a) Xi, G. L.; Liu, Z. Q. Tetrahedron 2014, 70,8397.
[18]
(b) Xi, G. L.; Liu, Z. Q. Tetrahedron 2015, 71,9602.
[19]
He, J. H.; Li, J. Z.; Liu, Z. Q. Med. Chem. Res. 2013, 22,2847.
[20]
Nabi, G.; Liu, Z. Q. Med. Chem. Res. 2012, 21,3015.
[21]
Zhao, C.; Liu, Z. Q. Biochimie 2013, 95,842.
[22]
Wang, R.; Liu, Z. Q. Med. Chem. Res. 2013, 22,1563.
[23]
Li, G. X.; Liu, Z. Q.; Luo, X. Y. Eur. J. Med. Chem. 2010, 45,1821.
[24]
Xi, G. L.; Liu, Z. Q. Eur. J. Med. Chem. 2013, 68,385.
Outlines

/