REVIEWS

Recent Development of Samarium Diiodide and Other Samarium Reagents in Organic Transformation

  • Chen Liu ,
  • Yan Qi ,
  • Yongjun Liu
Expand
  • Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042
*Corresponding authors.E-mail:;

Received date: 2020-11-25

  Revised date: 2021-01-28

  Online published: 2021-02-26

Supported by

Shandong Provincial Key Research and Development Program(2019GGXI02036)

Abstract

Since the samarium diiodide was discovered, it has been occupying a key field in organic synthesis due to the excellent ability of both single electron transfer and reduction. Other samarium reagents have also been wildly developed in recent years, such as Sm, allylSmBr, SmI3and so on. In this review, the reactions mediated by samarium reagents especially SmI2 in latest five years are summarized. It mainly includes three parts: studies on the SmI2 promoted coupling reactions, studies on the coupling reactions promoted by other samarium reagents (Sm, allylSmBr, SmI3, Sm(OTf)3 etc.), and studies on the samarium reagents promoted organic reduction reactions.

Cite this article

Chen Liu , Yan Qi , Yongjun Liu . Recent Development of Samarium Diiodide and Other Samarium Reagents in Organic Transformation[J]. Chinese Journal of Organic Chemistry, 2021 , 41(6) : 2202 -2216 . DOI: 10.6023/cjoc202011034

References

[1]
(a) Gansau?er, A.; Blum, H. Chem. Rev. 2000, 100,2771.
[1]
(b) Gansau?er, A.; Lauterbach, T.; Narayan, S. Angew. Chem. Int. Ed. 2003, 42,5556.
[1]
(c) Cuerva, J. M.; Justicia, J.; Oller-Lo?pez, J. L.; Oltra, J. E. Top. Curr. Chem. 2006, 264,63.
[1]
(d) Justicia, J.; Álvarez de Cienfuegos, L.; Cuerva, J. M. Chem. Soc. Rev. 2011, 40,3525.
[1]
(e) Streuff, J. Synthesis 2013, 45,281.
[2]
(a) Shabangi, M.; Flowers, R. A. II Tetrahedron Lett. 1997, 38,1137.
[2]
(b) Fuchs, J. R.; Mitchell, M. L.; Shabangi, M.; Flowers, R. A. II Tetrahedron Lett. 1997, 38,8157.
[2]
(c) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers, R. A. II Tetrahedron Lett. 1998, 39,4429.
[3]
Procter, D. J.; Flowers, R. A. I.; Skrydstrup, T. Organic Synthesis Using Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge, 2010,Chapter 4.
[4]
(a) Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1,5.
[4]
(b) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102,2693.
[5]
(a) Skrydstrup, T. Angew. Chem. In. Ed. 1997, 109,355.
[5]
(b) Krief, A.; Laval, A. M. Chem. Rev. 1999, 99,745.
[5]
(c) Kagan, B. H. Tetrahedron 2003, 59,10351.
[5]
(d) Berndt, M.; Gross, S.; Hlemann, A. Synlett 2004,422.
[5]
(e) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104,3371.
[5]
(f) Jung, D. Y.; Kim, Y. H. Synlett 2005,3019.
[5]
(g) Rudkin, I. M.: Miller, L. C.; Procter, D. J. Organomet. Chem. 2008, 34,19.
[5]
(h) Concellón, J. M.; Rodríguez-Solla, H.; Concellón, C. Chem. Soc. Rev. 2010, 39,4103.
[5]
(i) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13,187.
[5]
(j) Gong, H. J.; Jia, X. S.; Zhai, H. B. Chin. J. Org. Chem. 2010, 30,939(in Chinese).
[5]
(巩洪举, 贾学顺, 翟宏斌, 有机化学, 2010, 30,939.)
[6]
Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114,5959.
[7]
(a) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104,3371.
[7]
(b) Steel, P. G. J. Chem. Soc., erkin Trans. 1 2001,2727.
[7]
(c) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96,307.
[7]
(d) Choppin, S.; Ferreiro-Medeiros, L.; Barbarotto, M. Chem. Soc. Rev. 2013, 42,937.
[8]
Liu, Y. J.; Zhang, Y. M. Acta Chim. Sinica 2005, 63,341(in Chinese).
[8]
(刘永军, 张永敏, 化学学报, 2005, 63,341.)
[9]
Fukuzawa, S.; Nakanishi, A.; Fujinami, T.; Sakai, S. J. Chem. Soc., Chem. Commun. 1986,624.
[10]
Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27,5763.
[11]
Koshimizu, M.; Nagatomo, M.; Inoue, M. Tetrahedron 2018: 74 3384.
[12]
Huang, H.-M.; He, Q.; Procter, D. J. Synlett 2020, 31,45.
[13]
Takahashi, K.; Fukushima, K.; Seto, M.; Togashi, A.; Arai, Y.; Honda, T. J. Org. Chem. 2018, 83,10636.
[14]
Fukaya, K.; Tanaka, Y.; Sato, A. C.; Kodama, K.; Yamazaki, H.; Ishimoto, T.; Nozaki, Y.; Iwaki, Y.; Yuki, Y.; Chida, N. Org. Lett. 2015, 17,2570.
[15]
Masson, G.; Py, S.; Valle?e, Y. Angew. Chem. Int. Ed. 2002, 41,1772.
[16]
Burchak, O. N.; Py, S. Tetrahedron 2009, 65,7333.
[17]
Gour, J.; Gatadi, S.; Malasala, S.; Yaddanpudi, M. V.; Nanduri, S. J. Org. Chem. 2019, 84,7488.
[18]
Shi, S.-C.; Szostak, M. Org. Lett. 2015, 17,5144.
[19]
Xie, T.-T.; Zhou, L.-J.; Shen, M.-M.; Li, J.-Y.; Lv, X. Tetrahedron Lett. 2015, 56,3982.
[20]
Huang, F.; Zhang, S. L. Org. Lett. 2019, 21,7430.
[21]
Gonzalez-Rodríguez, J.; Soto, M.; Soengas, R. G.; Rodriguezsolla, H. Tetrahedron 2020, 76,130839.
[22]
Doler, C.; Friess, M.; Lackner, F.; Weber, H.; Fischer, R. C.; Breinbauer, R. Tetrahedron 2020, 76,131249.
[23]
Suzuki, K.; Iwasaki, H.; Domasu, R.; Hitotsuyanagi, N.; Wakizaka, Y.; Tominaga, M.; Yamashita, M. Tetrahedron 2015, 71.5513.
[24]
Evdokimovaaa, N. M.; Lamoral-Theys, D.; Mathieu, V. B. Med. Chem. 2011, 19,7252.
[25]
Rossi, A.; Kapahi, P.; Natoli, G. Nature 2000, 403,103.
[26]
(a) Takahashi, K.; Arai, Y.; Honda, T. Tetrahedron Lett. 2017, 58,4048.
[26]
(b) Takahashi, K.; Arai, Y.; Ikegami-Kawai, M.; Honda, T. Tetrahedron 2020, 76,131148.
[27]
Cho, J. Y.; Williams, P. G.; Kwon, H. C.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2007, 70,1321.
[28]
Takahashi, K.; Fukushima, K.; Tsubuki, M. Tetrahedron Lett. 2018, 59,1435.
[29]
Suzuki, J.; Miyano, N.; Yashiro, S. P.; Umezawa, T. Org. Biomol. Chem. 2017, 15,6557.
[30]
Murakami, S.; Takemoto, T.; Shimizu, Z. Pharm. J. Soc. Jpn. 1953, 73,1026.
[31]
Johnson, R. L.; Koerner, J. F. J. Med. Chem. 1988, 31,2057;.
[32]
Sagrera, G.; Bertucci, A.; Seoane, G. Bioorg. Med. Chem. 2011, 19,3060.
[33]
Soto, M.; Soengas, R. G.; Artur, M. S. Chem.-Eur. J. 2019, 25,13104.
[34]
Liu, X.-J.; Wen, Q.; Xiang, L.; Leng, X.-B.; Chen, Y.-F. Chem.-Eur. J. 2020, 26.5494.
[35]
Namy, J. L.; Souppe, J.; Kagan, H. B. Tetrahedron Lett. 1983, 24,765.
[36]
(a) Miyabe, H.; Toruda, M.; Inoue, K.; Tajiri, K. J. Org. Chem. 1998, 63,4397.
[36]
(b) Sturino, C. F.; Fallis, A. G. J. Am. Chem. Soc. 1994, 116,7447.
[37]
Yoshimura, A.; Saeki, T.; Nomoto, A. Tetrahedron 2015, 71,5347.
[38]
Hassan, A. H. E.; Lee, J. K. .; Pae, A. N.; Min, S.; Cho. Y.-S.. Org. Lett. 2015, 17,2672.
[39]
(a) Li, C. J. Tetrahedron 1996, 52,5643.
[39]
(b) Alonso, F.; Yus, M. Recent Res. Dev. Org. Chem. 1997, 1,39.
[39]
(c) Ramon, D. J.; Yus, M. Eur. J. Org. Chem. 2000, 2,225.
[39]
(d) Kouznetsov, V. V.; Mendez, L. Y. V. Synthesis 2008,491.
[40]
Kagan, H. B.; Namy, J. L. In Lanthanides: Chemistry and Use in Organic Synthesis , Ed.: Kobayashi, S., Springer, New York, 1999, pp.155~198.
[41]
Tomisaka, Y.; Nomoto, A.; Ogawa, A. Tetrahedron Lett. 2009, 50,584.
[42]
Wang, J.; Gasc. F.; Prandi, J. Eur. J. Org. Chem. 2015, 12,2691.
[43]
Aretz, C. D.; Escobedo, H.; Cowen, B. J. Eur. J. Org. Chem. 2018, 16,1880.
[44]
Garduño-Castroa, H. M.; Procter, D. J. Helv. Chim. Acta 2019, 102,e1900227.
[45]
Sinast, M.; Zuccolo, M.; Wischnat, J.; Sube, T.; Baro, A.; Dallavalle, S.; Laschat, S. J. Org. Chem. 2019, 84,10050.
[46]
Chuang, H.; Isobe, M. Tetrahedron 2017, 73,2705.
[47]
Shelby, N. K. C.; Ellery, P.; Chen, S. J. Angew. Chem. Int. Ed. 2009, 48,7140.
[48]
Just-Baringo, X.; Morrill, C.; Procter, D. J. Tetrahedron 2016, 72,7691.
[49]
Mao, H.; You, B.-X.; Zhou, L.-J.; Xie, T.-T.; Wen, Y.-H.; Lv, X.; Wang, X.-X. Org. Biomol. Chem. 2017, 15,6157.
[50]
Marsch, N.; Jones, P-G.; Lindel, T. Beilstein J. Org. Chem. 2015, 11,1700.
[51]
Kern, N.; Plesniak, P. M.; McDouall, J. J. W.; Procter, D. J. Nat. Chem. 2017, 7,1198.
[52]
Nierman, A.; Reissig, H. Synthesis 2020, 52,2721.
[53]
(a) Banik, B. K. Eur. J. Org. Chem. 2002, 15,2431.
[53]
Zeng, Q.; Li, Z.-C.; He, J.-Q. Chin. J. Org. Chem. 2010, 30,345(in Chinese).
[53]
(曾青, 李祖成, 何家骐, 有机化学, 2010, 30,345.)
[54]
(a) Chen, P.; Zhang, D. Tetrahedron 2014, 70,8505.
[54]
(b) Uladzimir, L. ARKIVOC 2014,307.
[54]
(c) Shu, K.; Masaharu, S.; Hidetoshi, K. Chem. Rev. 2002, 102,2227.
[55]
(a) Gao, X.; Wang, X.; Cai, R. F.; Wei, J.-D.; Wu, S.-H. Acta Chim. Sinica 1993, 51,1139(in Chinese).
[55]
(高翔, 王翔, 蔡瑞芳, 卫景德, 吴世晖, 化学学报, 1993, 51,1139.)
[55]
(b) Yu, M.-X.; Zhang, Y.-M. Chem. J. Chin. Univ. 2003, 24,1618(in Chinese).
[55]
(余明新, 张永敏, 高等学校化学学报, 2003, 24,1618.)
[55]
(c) Li, Z. F.; Gao, X.-J.; Lai, G.-Q. J. Organomet. Chem. 2006, 691,4740.
[56]
Liu, Y.-J.; Zhang, D.-M.; Xiao, S.-H. Asian. J. Org. Chem. 2019, 8,858.
[57]
Li, Y.; Deng, P.; Zeng, Y.-M.; Xiong, Y.; Zhou, H. Org. Lett. 2016, 18,1578.
[58]
Liu, Y.-J.; Tian, G.; Li, J.; Qi, Y. J. Org. Chem. 2017, 82,5932.
[59]
Liu, Y.-J.; Xiao. S.-H.; Qi, Y.; Du, F. Chem. Asian J. 2017, 12,673.
[60]
Wang, X.-X.; Li, J.-Y.; Yuan, T.; Xie, G.-Q.; Lv, X. J. Org. Chem. 2018, 83,8984.
[61]
Li, J.-Y.; Niu, Q. -.; Li, S.-H.; Zhou, Q.; Lv, X.; Wang, X.-X. Tetrahedron Lett. 2017, 58,1250.
[62]
You, B. X.; Shen, M.-M.; Xie, G.-Q.; Mao, H.; Lv, X.; Wang, X.-X. Org. Lett. 2018, 20,530.
[63]
Esumi, N.; Nishimoto, Y.; Yasuda, M. Chem.-Eur. J. 2017,2831.
[64]
Wang, Y.-C.; Li, J.-L.; He, Y.; Xie, Y.-Y.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2015, 357,3229.
[65]
Rakhimova, E.-B.; Ismagilov, R.; Zainullin. R. A.; Khalilov, L.; Ibragimov, A.; Dzhemilev, U. Tetrahedron 2016, 72,8223.
[66]
Yu, S.-M.; Cui, K.; Lv, F.; Yang, Z.-Y.; Yao, Z.-J. Tetrahedron Lett. 2016, 57,2818.
[67]
Liu, Y.-J.; Zhao, H.-M.; Tian, G. RSC Adv. 2016, 6,26317.
[68]
Anthore-Dalion, L.; Benischke, A.D; Wei, B. S.; Berionni, G.; Knochel, P. Angew. Chem. Int. Ed. 2019, 58,4046.
[69]
Thurow, S.; Lenarda?o, E. J.; Just-Baringo, X.; Procter, D. J. Org. Lett. 2017, 19,50.
[70]
Kolmar, S.; Mayer, J. M. J. Am. Chem. Soc. 2017, 139,10687.
[71]
Stockdale, T. F.; Leitch. M. A.; O'Neil, G. W. Synthesis 2020, 52,1544.
[72]
Yokoyama, Y.; Oyamada, S.; Suzuki, J.; Maruyama, S.; Sakusabe, T.; Suzuki, S. Synth. Commun. 2018, 48,1025.
Outlines

/