ARTICLES

Cu(OTf)2 Catalyzed Conjugate Addition of Mercaptans to Enones

  • Tongfei Zhang ,
  • Yibo Chen ,
  • Zhenbo Gao
Expand
  • College of Sciences, Nanjing Agricultural University, Nanjing 210095
*Corresponding author.E-mail:

Received date: 2020-12-14

  Revised date: 2020-12-06

  Online published: 2021-02-26

Supported by

Nanjing Agricultural University Research Start-Up Funding, the Jiangsu Shuang Chuang Doctoral Grants in 2019, and the National Program for Student Innovation through Research and Training in 2020(202010307090)

Abstract

Thioether is a class of compounds with important biological and physiological activities, especially for drugs and natural products, and its efficient synthesis method is one of the research hotspots in organic chemistry. Thia-Michael addition, especially the addition catalyzed by small organic molecules has been widely proved to be an effective method for synthesizing thioether molecules. However, very few studies on transition metal-catalyzed thia-Michael addition have been published and further exploration in this area is needed. In this work, different types of thiol molecules have been effectively added to various cyclic and linear Michael acceptors through the catalysis of copper(II) triflate. To our delight, 42 kinds of sulfide molecules (up to 99% yield) have been efficiently synthesized. This method has many advantages such as mild reaction conditions, wide substrates, simple operation and excellent yield, providing a new method for the preparation of various thioether molecules.

Cite this article

Tongfei Zhang , Yibo Chen , Zhenbo Gao . Cu(OTf)2 Catalyzed Conjugate Addition of Mercaptans to Enones[J]. Chinese Journal of Organic Chemistry, 2021 , 41(6) : 2424 -2434 . DOI: 10.6023/cjoc202012022

References

[1]
Borthwick, A. D. Chem. Rev. 2012, 112,3641.
[2]
Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96,3147.
[3]
Wang, M.; Wang, C. H.; Jiang, X. F. Chin. J. Org. Chem. 2019, 39,2139(in Chinese).
[3]
(王明, 王翠红, 姜雪峰, 有机化学, 2019, 39,2139.)
[4]
Lu, H. H.; Zhang, F. G.; Meng, X. G.; Duan, S. W.; Xiao, W. J. Org. Lett. 2009, 11,3946.
[5]
Wang, Y. F.; Wu, S.; Karmaker, P. G.; Sohail, M.; Wang, Q.; Chen, F. X. Synthesis 2015, 47,1147.
[6]
Dong, X. Q.; Fang, X.; Wang, C. J. Org. Lett. 2011, 13,4426.
[7]
Cong, Z. S.; Li, Y. G.; Du, G. F.; Gu, C. Z.; Dai, B.; He, L. Chem. Commun. 2017, 53,13129.
[8]
Chen, J.; Meng, S.; Wang, L.; Tang, H.; Huang, Y. Chem. Sci. 2015, 6,4184.
[9]
Chen, W.; Jing, Z.; Chin, K. F.; Qiao, B.; Zhao, Y.; Yan, L.; Tan, C. H.; Jiang, Z. Adv. Synth. Catal. 2014, 356,1292.
[10]
Zhao, B. L.; Du, D. M. Org. Biomol. Chem. 2014, 12,1585.
[11]
Li, H.; Zu, L.; Wang, J.; Wang, W. Tetrahedron Lett. 2006, 47,3145.
[12]
Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75,2089.
[13]
Jha, R. K.; Rout, S.; Joshi, H.; Das, A.; Singh, V. K. Tetrahedron 2020, 76,130800.
[14]
Formica, M.; Sorin, G.; Farley, A. J. M.; Díaz, J.; Paton, R. S.; Dixon, D. J. Chem. Sci. 2018, 9,6969.
[15]
Fulton, J. L.; Horwitz, M. A.; Bruske, E. L.; Johnson, J. S. J. Org. Chem. 2018, 83,3385.
[16]
Chauhan, P.; Mahajan, S.; Kaya, U.; Valkonen, A.; Rissanen, K.; Enders, D. Adv. Synth. Catal. 2016, 358,3173.
[17]
Hayama, N.; Kobayashi, Y.; Sekimoto, E.; Miyazaki, A.; Inamoto, K.; Kimachi, T.; Takemoto, Y. Chem. Sci. 2020, 11,5572.
[18]
Wadhwa, P.; Kharbanda, A.; Sharma, A. Asian J. Org. Chem. 2018, 7,634.
[19]
White, J. D.; Shaw, S. Chem. Sci. 2014, 5,2200.
[20]
Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011, 13,2150.
[21]
Hu, Y.; Gong, L.; Ding, X.; Meggers, E.; Tian, C. Eur. J. Org. Chem. 2016,887.
[22]
Wang, W.; Wang, J.; Li, S.; Li, C.; Tan, R.; Yin, D. Green Chem. 2020, 22,4645.
[23]
Kipnis, F.; Ornfelt, J. J. Am. Chem. Soc. 1949, 71,3554.
[24]
Lee, W.; Wang, T.; Chang, H.; Chen, Y.; Kuo, T. Organometallics 2012, 31,4106.
[25]
Alt, I.; Rohse, P.; Plietker, B. ACS Catal. 2013, 3,3002.
[26]
Sundar, M. S.; Bedekar, A. V. Synth. Commun. 2014, 44,3582.
[27]
Shaw, S.; White, J. D. Synthesis 2016, 48,2768.
[28]
Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46,1721.
[29]
Chu, C. M.; Huang, W. J.; Lu, C.; Wu, P.; Liu, J. T.; Yao, C. F. Tetrahedron Lett. 2006, 47,7375.
[30]
Lauzon, S.; Li, M.; Keipour, H.; Ollevier, T. Eur. J. Org. Chem. 2018, 2018 4536.
[31]
Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Green Chem. Lett. Rev. 2009, 2,43.
[32]
Ménand, M.; Dalla, V. Synlett 2005,95.
[33]
Abaee, M. S.; Cheraghi, S.; Navidipoor, S.; Mojtahedi, M. M.; Forghani, S. Tetrahedron Lett. 2012, 53,44058.
[34]
Li, Y.; Wang, Y.; Du, G.; Zhang, H.; Yang, H.; He, L. Asian J. Org. Chem. 2015, 4,327.
[35]
Han, F.; Yang, L.; Li, Z.; Xia, C. Org. Biomol. Chem. 2012, 10,346.
[36]
Nicponski, D. R.; Marchi, J. M. Synthesis 2014, 46,1725.
Outlines

/