ARTICLES

Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides

  • Yangyang Weng ,
  • Jingping Qu ,
  • Yifeng Chen
Expand
  • 1 Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237
* Corresponding author. E-mail:

Received date: 2021-01-15

  Revised date: 2021-02-01

  Online published: 2021-02-26

Supported by

National Natural Science Foundation of China(21702060); Fundamental Research Funds for the Central Universities.; Shanghai Rising-Star Program, the Shanghai Municipal Science and Technology Major Project(2018SHZDZX03); Program of Introducing Talents of Discipline to Universities(B16017)

Abstract

Herein, the palladium-catalyzed allylic carbonylative Negishi cross-coupling reaction employing sterically bulky aromatic isocyanides as the CO surrogate was disclosed. The leverage of sterically bulky aromatic isocyanide minimizes the side β-H elimination in carboxylation reaction, affords synthetically important β,γ-unsaturated ketones with high regioselectivity and stereoselectivity, thereby tackles the long-standing challenge in Pd-catalyzed allylic carbonylative cross-coupling with CO gas. Moreover, this protocol exhibits the advantage including mild reaction conditions, as well as broad substrate scope due to the utilization of Negishi reagent as the carbon nucleophiles.

Cite this article

Yangyang Weng , Jingping Qu , Yifeng Chen . Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1949 -1956 . DOI: 10.6023/cjoc202101021

References

[1]
(a) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2009, 48, 4114.
[1]
(b) Peng, J.-B.; Geng, H.-Q.; Wu, X.-F. Chem 2019, 5, 526.
[1]
(c) Grigg, R.; Mutton, S. P. Tetrahedron 2010, 66, 5515.
[1]
(d) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4, 2977.
[1]
(e) Yin, Z.; Wang, Z.; Wu, X.-F. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese).
[1]
(尹志平, 王泽超, 吴小锋, 有机化学, 2019, 39, 573.)
[1]
(f) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
[1]
(g) Jiang, T.; Liu, H.; Zhang, H.; Huang, H. Chin. J. Chem. 2020, 38, 635.
[2]
(a) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.
[2]
(b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
[2]
(c) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
[3]
Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
[4]
(a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
[4]
(b) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
[4]
(c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
[4]
(d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[5]
(a) Weaver, J. D.; Recio, III,A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
[5]
(b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
[5]
(c) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
[5]
(d) Huang, H.-M.; Bellotti, P.; Glorius, F. Chem. Soc. Rev. 2020, 49, 6186.
[6]
(a) Tsuji, J.; Sato, K.; Okumoto, H.; J. Org. Chem. 1984, 49, 1341.
[6]
(b) Kiji, J.; Okano, T.; Higashimae, Y.; Fukui, Y. Bull. Chem. Soc. Jpn. 1996, 69, 1029.
[6]
(c) Takeuchi, R.; Akiyama, Y. J. Organomet. Chem. 2002, 651, 137.
[6]
(d) Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538.
[6]
(e) Murahashi, S. I.; Imada, Y.; Taniguchi, Y.; Higashiura, S.-Y. Tetrahedron Lett. 1988, 29, 4945.
[6]
(f) Mitsudo, T.-A.; Suzuki, N.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1994, 59, 7759.
[6]
(g) Liu, Q.; Wu, L.; Jiao, H.; Fang, X.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 8064.
[6]
(h) Murahashi, S.-I.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538.
[7]
(a) Knifton, J. F. J. Organomet. Chem. 1980, 188, 223.
[7]
(b) Murahashi, S.-I.; Imada, Y.; Nishimura, K. Tetrahedron, 1994, 50, 453.
[7]
(c) Murahashi, S.-I.; Imada, Y. Chem. Lett. 1985,1477.
[8]
(a) Okano, T.; Okabe, N.; Kiji, J. Bull. Chem. Soc. Jpn. 1992, 65, 2589.
[8]
(b) Naigre, R.; Alper, H. J. Mol. Catal. A: Chem. 1996, 111, 11.
[8]
(c) Xiao, W.-J.; Alper, H. J. Org. Chem. 1998, 63, 7939.
[8]
(d) Matsuzaka, H.; Hiroe, Y.; Iwasaki, M.; Ishii, Y.; Koyasu, Y.; Hidai, M. J. Org. Chem. 1988, 53, 3832.
[8]
(e) Iwasaki, M.; Kobayashi, Y.; Li, J. P.; Matsuzaka, H.; Ishii, Y.; Hidai, M. J. Org. Chem. 1991, 56, 1922.
[9]
(a) Houk, K. N. Chem. Rev. 1976, 76, 1.
[9]
(b) Ranu, B. C.; Majee, A.; Das, A. R. Tetrahedron Lett. 1996, 37, 1109.
[9]
(c) Hoffmann, H. R. M.; Tsushima, T. J. Am. Chem. Soc. 1977, 99, 6008.
[9]
(d) Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489.
[9]
(e) Yasuda, S.; Ishii, T.; Takemoto, S.; Haruki, H.; Ohmiya, H. Angew. Chem. Int. Ed. 2018, 57, 2938.
[9]
(f) Haruki, H.; Yasuda, S.; Nagao, K.; Ohmiya, H. Chem.-Eur. J. 2019, 25, 724.
[9]
(g) Takemoto, S.; Ishii, T.; Yasuda, S.; Ohmiya, H. Bull. Chem. Soc. Jpn. 2019, 92, 937.
[10]
(a) Sheffy, F.; Stille, J. J. Am. Chem. Soc. 1983, 105, 7173.
[10]
(b) Sheffy, F.; Godschalx, J.; Stille, J. J. Am. Chem. Soc. 1984, 106, 4833.
[11]
(a) Tamaru, Y.; Yasui, K.; Takanabe, H.; Tanaka, S.; Fugami, K. Angew. Chem. Int. Ed. 1992, 31, 645.
[11]
(b) Yasui, K.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1995, 60, 1365.
[12]
(a) Boyarskiy, V. P.; Bokach, N. A.; Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698.
[12]
(b) Qiu, G.; Ding, Q.; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.
[12]
(c) Lang, S. Chem. Soc. Rev. 2013, 42, 4867.
[12]
(d) Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084.
[12]
(e) D?mling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.
[12]
(f) Otsuka, S.; Nogi, K.; Yorimitsu, H. Angew. Chem. Int. Ed. 2018, 57, 6653.
[12]
(g) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
[12]
(h) Wang, H.; Xu, B. Chin. J. Org. Chem. 2015, 35, 588. (in Chinese).
[12]
(王浩, 许斌, 有机化学, 2015, 35, 588.)
[12]
For selected example of Pd-catalyzed reactions with isocyanide as CO surrogate, see:.
[12]
(i) Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett. 2011, 13, 1028.
[12]
(j) Tang, T.; Fei, X.-D.; Ge, Z.-Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2013, 78, 3170.
[12]
(k) Jiang, X.; Wang, J.-M.; Zhang, Y.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. Org. Lett. 2014, 16, 3492.
[12]
(l) Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2012, 77, 10321.
[12]
(m) Hu, W.; Li, M.; Jiang, G.; Wu, W.; Jiang, H. Org. Lett. 2018, 20, 3500.
[12]
(n) Li, Z.; Zheng, J.; Hu, W.; Li, J.; Wu, W.; Jiang, H. Org. Chem. Front. 2017, 4, 1363.
[12]
(o) Hu, W.; Zheng, J.; Li, J.; Liu, B.; Wu, W.; Liu, H.; Jiang, H. J. Org. Chem. 2016, 81, 12451.
[13]
Weng, Y.; Zhang, C.; Tang, Z.; Shrestha, M.; Huang, W.; Qu, J.; Chen, Y. Nat. Commun. 2020, 11, 392.
[14]
Wang, C.; Wu, L.; Xu, W.; He, F.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 6954.
[15]
(a) Huang, W.; Wang, Y.; Weng, Y.; Shrestha, M.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 3245.
[15]
(b) Wang, Y.; Huang, W.; Wang, C.; Qu, J.; Chen, Y. Org. Lett. 2020, 22, 4245.
[16]
Qiu, G.; Mamboury, M.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 15377.
[17]
Ma, W.; Xue, D.; Yu, T.; Wang, C.; Xiao, J.-L. Chem. Commun. 2015, 51, 8797.
[18]
Krasovskiy, A.; Knochel, P. Synthesis 2006,890.
[19]
Spoehrle, S. S. M.; West, T. H.; Taylor, J. E.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2017, 139, 11895.
[20]
Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Angew. Chem. Int. Ed. 2011, 50, 8656.
[21]
Liu, L.; Bao, X.; Xiao, H.; Li, J.; Ye, F.; Wang, C.; Cai, Q.; Fan, S. J. Org. Chem. 2019, 84, 423.
[22]
Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, T.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
[23]
Delvos, L. B.; Vyas, D. J.; Oestreich, M. Angew. Chem. Int. Ed. 2013, 52, 4650.
[24]
Shintani, R.; Fujie, R.; Takeda, M.; Nozaki, K. Angew. Chem. Int. Ed. 2014, 53, 6546.
[25]
Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597.
[26]
Wakeham, R. J.; Baillie, R. A.; Patrick, B. O.; Legzdins, P.; Rosenfeld, D. C. Organometallics 2017, 36, 39.
[27]
Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489.
[28]
Zhuo, L.-G.; Yao, Z.-K.; Yu, Z.-X. Org. Lett. 2013, 15, 4634.
Outlines

/