REVIEWS

Advances on Quasi-classical Molecular Dynamics of Organic Reaction Mechanisms

  • Kairui Zhang ,
  • Yaya Wang ,
  • Hongdan Zhu ,
  • Qian Peng
Expand
  • State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-02-20

  Revised date: 2021-03-18

  Online published: 2021-03-25

Supported by

National Natural Science Foundation of China(21890722); National Natural Science Foundation of China(21950410519); National Natural Science Foundation of China(21702109); Natural Science Foundation of Tianjin Municipality(19JCJQJC62300); Natural Science Foundation of Tianjin Municipality(18JCYBJC21400); Tianjin Research Innovation Project for Postgraduate Students(2019YJSB081); Fundamental Research Funds for Central Universities (Nankai University)

Abstract

Quasi-classical molecular dynamics is a computational method that combines classical molecular dynamics and electronic structure theory, which can not only simulate the statistics of the corresponding products or intermediates in the reaction mechanism, but also provide dynamic information of chemical bond formation/cleavage on time scales. Density functional theory (DFT) calculation has been widely used in the research of reaction mechanism, but there are relatively few studies from the perspective of quasi-classical molecular dynamics, such as the phenomenon of bifurcations of transition states and their selectivity, stepwise processes appear in the concerted mechanism of cycloaddition, bypassing common intermediates and directly generating products, etc. These novel mechanism processes often require molecular dynamics, and some even break the cognition of traditional transition state theory. The recent research progress of quasi-classical molecular dynamics of organic chemical reaction mechanisms is reviewed, with emphasis on the dynamic effect in the mechanism, in order to deepening people's understanding of organic reaction mechanisms and broaden the theory of organic chemistry.

Cite this article

Kairui Zhang , Yaya Wang , Hongdan Zhu , Qian Peng . Advances on Quasi-classical Molecular Dynamics of Organic Reaction Mechanisms[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3995 -4006 . DOI: 10.6023/cjoc202102036

References

[1]
Blais, N. C.; Bunker, D. L. J. Chem. Phys. 1962, 37, 2713.
[2]
Bunker, D. L. J. Chem. Phys. 1964, 40, 1946.
[3]
Bunker, D. L. J. Chem. Phys. 1962, 37, 393.
[4]
Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 864.
[5]
Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 1133.
[6]
Zhang, D. H.; Collins, M. A.; Lee, S.-Y. Science 2000, 290, 961.
[7]
Xie, Y.; Zhao, H.; Wang, Y.; Huang, Y.; Wang, T.; Xu, X.; Xiao, C.; Sun, Z.; Zhang, D. H.; Yang, X. Science 2020, 368, 767.
[8]
Paranjothy, M.; Sun, R.; Zhuang, Y.; Hase, W. L. Comput. Mol. Sci. 2013, 3, 296.
[9]
Pratihar, S.; Ma, X.; Homayoon, Z.; Barnes, G. L.; Hase, W. L. J. Am. Chem. Soc. 2017, 139, 3570.
[10]
Verlet, L. Phys. Rev. 1967, 159, 98.
[11]
Hollingsworth, S. A.; Dror, R. O. Neurone 2018, 99, 1129.
[12]
Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
[13]
Helgaker, T.; Uggerud, E.; Jensen, H. J. A. Chem. Phys. Lett. 1990, 173, 145.
[14]
Uggerud, E.; Helgaker, T. J. Am. Chem. Soc. 1992, 114, 4265.
[15]
Barnett, R. N.; Landman, U. Phys. Rev. B 1993, 48, 2081.
[16]
Hase, W. L.; Duchovic, R. J.; Hu, X.; Komornicki, A.; Lim, K.; Lu, D.-H.; Peslherbe, G. H.; Swamy, K. N.; Vande Linde, S. R.; Wang, H.; Wolfe, R. J. Quant. Chem. Prog. Ex. 1996, 16, 671.
[17]
Li, G.; Hase, W. L. J. Am. Chem. Soc. 1999, 121, 7124.
[18]
Xie, J.; Sun, R.; Siebert, M. R.; Otto, R.; Wester, R.; Hase, W. L. J. Phys. Chem. A 2013, 117, 7162.
[19]
Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 104, 7882.
[20]
Singleton, D. A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. J. Am. Chem. Soc. 2003, 125, 1176.
[21]
Carlsen, R.; Wohlgemuth, N.; Carlson, L.; Ess, D. H. J. Am. Chem. Soc. 2018, 140, 11039.
[22]
Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery Jr, J. A. J. Comput. Chem. 1993, 14, 1347.
[23]
Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K. N. Angew. Chem., Int. Ed. 2008, 47, 7592.
[24]
Hare, S. R.; Tantillo, D. J. Pure Appl. Chem. 2017, 89, 679.
[25]
Caramella, P.; Quadrelli, P.; Toma, L. J. Am. Chem. Soc. 2002, 124, 1130.
[26]
Zhang, L.; Wang, Y.; Yao, Z.-J.; Wang, S.-Z.; Yu, Z.-X. J. Am. Chem. Soc. 2015, 137, 13290.
[27]
Burns, J. M.; Boittier, E. D. J. Org. Chem. 2019, 84, 5997.
[28]
Fu, C.; Lora, N.; Kirchhoefer, P. L.; Lee, D. R.; Altenhofer, E.; Barnes, C. L.; Hungerford, N. L.; Krenske, E. H.; Harmata, M. Angew. Chem., Int. Ed. 2017, 56, 14682.
[29]
Yu, P.; Chen, T. Q.; Yang, Z.; He, C. Q.; Patel, A.; Lam, Y.-H.; Liu, C.-Y.; Houk, K. N. J. Am. Chem. Soc. 2017, 139, 8251.
[30]
Patel, A.; Chen, Z.; Yang, Z.; Gutiérrez, O.; Liu, H.-W.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 2016, 138, 3631.
[31]
Black, K.; Liu, P.; Xu, L.; Doubleday, C.; Houk, K. N. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12860.
[32]
Yu, P.; Patel, A.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 13518.
[33]
Zhang, C.; Wang, X.; Chen, Y.; He, Z.; Yu, P.; Liang, Y. J. Org. Chem. 2020, 85, 9440.
[34]
Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Comput. Mol. Sci. 2013, 3, 198.
[35]
Xue, X.-S.; Jamieson, C. S.; Garcia-Borràs, M.; Dong, X.; Yang, Z.; Houk, K. N. J. Am. Chem. Soc. 2019, 141, 1217.
[36]
Roth, W. R.; Wollweber, D.; Offerhaus, R.; Rekowski, V.; Lennartz, H.-W.; Sustmann, R.; Müller, W. Chem. Ber. 1993, 126, 2701.
[37]
Hrovat, D. A.; Duncan, J. A.; Borden, W. T. J. Am. Chem. Soc. 1999, 121, 169.
[38]
Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2002, 124, 7896.
[39]
Villar López, R.; Faza, O. N.; Silva López, C. J. Org. Chem. 2017, 82, 4758.
[40]
Hare, S. R.; Tantillo, D. J. Beilstein J. Org. Chem. 2016, 12, 377.
[41]
Siebert, M. R.; Zhang, J.; Addepalli, S. V.; Tantillo, D. J.; Hase, W. L. J. Am. Chem. Soc. 2011, 133, 8335.
[42]
Blümel, M.; Nagasawa, S.; Blackford, K.; Hare, S. R.; Tantillo, D. J.; Sarpong, R. J. Am. Chem. Soc. 2018, 140, 9291.
[43]
Xu, L.; Doubleday, C. E.; Houk, K. N. J. Am. Chem. Soc. 2011, 133, 17848.
[44]
Yu, P.; Yang, Z.; Liang, Y.; Hong, X.; Li, Y.; Houk, K. N. J. Am. Chem. Soc. 2016, 138, 8247.
[45]
Yang, Y.; Zhang, X.; Zhong, L.-P.; Lan, J.; Li, X.; Li, C.-C.; Chung, L. W. Nat. Commun. 2020, 11, 1850.
[46]
Zheng, C. Chin. J. Chem. 2020, 38, 1579.
[47]
Zheng, C.; Xia, Z.-L.; You, S.-L. Chem 2018, 4, 1952.
[48]
Xie, J.; Otto, R.; Mikosch, J.; Zhang, J.; Wester, R.; Hase, W. L. Acc. Chem. Res. 2014, 47, 2960
[49]
Xie, J.; Hase, W. L. Science 2016, 352, 32.
Outlines

/