REVIEWS

Recent Progress in Iridium-Catalyzed Remote Regioselective C—H Borylation of (Hetero)Arenes

  • Xiaoliang Zou ,
  • Senmiao Xu
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
    b University of Chinese Academy of Sciences, Beijing 100049
* Corresponding author. E-mail:

Received date: 2021-03-10

  Revised date: 2021-03-17

  Online published: 2021-03-25

Supported by

National Natural Science Foundation of China(91956116)

Abstract

(Hetero)Aryl boronic acids and their derivatives have been widely used in synthetic chemistry, material sciences, and drug discovery. Accordingly, the development of novel synthetic methods towards these structures has received a great deal of attention. In particular, Ir-catalyzed C—H borylation represents one of the most efficient methods. Due to the restriction of the reaction mechanism, regioselective controllable C—H borylation of Ir catalysis is a formidable challenge, and it is also an important development direction in this area. In this review, the recent progress in Ir-catalyzed remote selective C—H borylation of arenes is systematically discussed.

Cite this article

Xiaoliang Zou , Senmiao Xu . Recent Progress in Iridium-Catalyzed Remote Regioselective C—H Borylation of (Hetero)Arenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2610 -2620 . DOI: 10.6023/cjoc202103020

References

[1]
Mkhalid,I. A.I.; Barnard,J. H.; Marder,T. B.; Murphy,J. M.; Hartwig,J. F. Chem. Rev. 2010, 110,890.
[2]
Zhu,D. -X.; Xu,M. -H. Chin. J. Org. Chem. 2020, 40,255 (in Chinese).
[2]
( 祝东星, 徐明华, 有机化学, 2020, 40,255.)
[3]
Liu, W.; Lu, Z. Chin. J. Org. Chem. 2020, 40,3596 (in Chinese).
[3]
( 刘文伯, 陆展, 有机化学, 2020, 40,3596.)
[4]
Xu, H.; Jiang, Z. Chin. J. Org. Chem. 2020, 40,3483 (in Chinese).
[4]
( 许荷欢, 江智勇, 有机化学, 2020, 40,3483.)
[5]
Yang,J. -M.; Li,Z. -Q.; Zhu,S. -F. Chin. J. Org. Chem. 2017, 37,2481 (in Chinese).
[5]
( 杨吉民, 李子奇, 朱守非, 有机化学, 2017, 37,2481.)
[6]
Jiang,Z. -T.; Wang, Bi-Q.; Shi,Z. -J. Chin. J. Chem. 2018, 36,950.
[7]
Zhan, M.; Song, P.; Jiao, J.; Li, P. Chin. J. Chem. 2020, 38,665.
[8]
Wang,Y. -X.; Zhang,P. -F.; Ye, M. Chin. J. Chem. 2020, 38,1762.
[9]
Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi,N. R.; Hartwig,J. F. J. Am. Chem. Soc. 2002, 124,390.
[10]
Cho,J. -Y.; Tse,M. K.; Holmes, D.; Maleczka,R. E.; Smith,M. R. Science 2002, 295,305.
[11]
Boller,T. M.; Murphy,J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig,J. F. J. Am. Chem. Soc. 2005, 127,14263.
[12]
Boebel,T. A.; Hartwig,J. F. J. Am. Chem. Soc. 2008, 130,7534.
[13]
Robbins,D. W.; Boebel,T. A.; Hartwig,J. F. J. Am. Chem. Soc. 2010, 132,4068.
[14]
Preshlock,S. M.; Plattner,D. L.; Maligres,P. E.; Krska,S. W.; Maleczka,R. E.; Smith,M. R. Angew. Chem.,Int. Ed. 2013, 52,12915.
[15]
Roosen,P. C.; Kallepalli,V. A.; Chattopadhyay, B.; Singleton,D. A.; Maleczka,R. E.; Smith,M. R. J. Am. Chem. Soc. 2012, 134,11350.
[16]
Li,H. -L.; Kanai, M.; Kuninobu, Y. Org. Lett. 2017, 19,5944.
[17]
Liang,L. H.; Yoichiro, K.; Motomu, K. Angew. Chem.,Int. Ed. 2017, 56,1495.
[18]
Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun. 2010, 46,159.
[19]
Sasaki, I.; Taguchi, J.; Hiraki, S.; Ito, H.; Ishiyama, T. Chem.-Eur. J. 2015, 21,9236.
[20]
Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. J. Am. Chem. Soc. 2009, 131,5058.
[21]
Kawamorita, S.; Ohmiya, H.; Sawamura, M. J. Org. Chem. 2010, 75,3855.
[22]
Yamazaki, K.; Kawamorita, S.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12,3978.
[23]
Crawford,K. M.; Ramseyer,T. R.; Daley,C. J.A.; Clark,T. B. Angew. Chem.,Int. Ed. 2014, 53,7589.
[24]
Roering,A. J.; Hale,L. V.A.; Squier,P. A.; Ringgold,M. A.; Wiederspan,E. R.; Clark,T. B. Org. Lett. 2012, 14,3558.
[25]
Hale,L. V.A.; McGarry,K. A.; Ringgold,M. A.; Clark,T. B. Organometallics 2015, 34,51.
[26]
Ros, A.; Estepa, B.; López-Rodríguez, R.; Álvarez, E.; Fernández, R.; Lassaletta,J. M. Angew. Chem.,Int. Ed. 2011, 50,11724.
[27]
Ros, A.; López-Rodríguez, R.; Estepa, B.; Álvarez, E.; Fernández, R.; Lassaletta,J. M. J. Am. Chem. Soc. 2012, 134,4573.
[28]
Ghaffari, B.; Preshlock,S. M.; Plattner,D. L.; Staples,R. J.; Maligres,P. E.; Krska,S. W.; Maleczka,R. E.; Smith,M. R. J. Am. Chem. Soc. 2014, 136,14345.
[29]
Wang, G.; Liu, L.; Wang, H.; Ding,Y. -S.; Zhou, J.; Mao, S.; Li, P. J. Am. Chem. Soc. 2017, 13,91.
[30]
Ros, A.; Fernandez, R.; Lassaletta,J. M. Chem. Soc. Rev. 2014,43 3229.
[31]
Hartwig,J. F. Chem. Soc. Rev. 2011, 40,1992.
[32]
Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Tetrahedron 2017, 73,7123.
[33]
Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke,L. P.; Baran,P. S. J. Am. Chem. Soc. 2015, 137,10160.
[34]
Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. Nat. Chem. 2015, 7,712.
[35]
Lu, X.; Yoshigoe, Y.; Ida, H.; Nishi, M.; Kanai, M.; Kuninobu, Y. ACS Catal. 2019, 9,1705.
[36]
Bisht, R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138,84.
[37]
Hoque,M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. J. Am. Chem. Soc. 2017, 139,7745.
[38]
Davis,H. J.; Mihai,M. T.; Phipps,R. J. J. Am. Chem. Soc. 2016, 138,12759.
[39]
Mihai,M. T.; Davis,H. J.; Genov,G. R.; Phipps,R. J. ACS Catal. 2018, 8,3764.
[40]
Lee, B.; Mihai,M. T.; Stojalnikova, V.; Phipps,R. J. J. Org. Chem. 2019, 84,13124.
[41]
Davis,H. J.; Genov,G. R.; Phipps,R. J. Angew. Chem.,Int. Ed. 2017, 56, 13351.
[42]
Genov,G. R.; Douthwaite,J. L.; Lahdenperä,A. S.K.; Gibson,D. C.; Phipps,R. J. Science 2020, 367,1246.
[43]
Mihai,M. T.; Williams,B. D.; Phipps,R. J. J. Am. Chem. Soc. 2019, 141,15477.
[44]
Saito, Y.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137,5193.
[45]
Okumura, S.; Tang, S.; Saito, T.; Semba, K.; Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2016, 138,14699.
[46]
Yang, L.; Semba, K.; Nakao, Y. Angew. Chem.,Int. Ed. 2017, 56,4853.
[47]
Yang, L.; Uemura, N.; Nakao, Y. J. Am. Chem. Soc. 2019, 141,7972.
[48]
Trouvé, J.; Zardi, P.; Al-Shehimy, S.; Roisnel, T.; Gramage-Doria, R. Angew. Chem.,Int. Ed. 10.1002/anie.202101997.
Outlines

/