ARTICLES

A New Fluorescent Probe for Hypochlorous Acid Based on Chlorinium Ions Recognition Mechanism and Its Bioimaging Research in Living Cells

  • Yun Zhao ,
  • Yanfang Li ,
  • Rongxiao Li ,
  • Yaqing Wang ,
  • Xiaoxia Fan
Expand
  • 1 Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619
* Corresponding author. E-mail:

Received date: 2021-01-22

  Revised date: 2021-03-15

  Online published: 2021-04-06

Supported by

National Natural Science Foundation of China(21807077); Shanxi Provincial Natural Science Foundation for Youths(201801D221081); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province(201802100)

Abstract

A simple phenothiazine-indanone conjugated fluorescent probe PIOCl for HOCl was designed and synthesized. For the first time, a new fluorescent probe for HOCl based on Cl+ induced the unique electrophilic substitution reaction under the physiological conditions. The probe PIOCl was a turn-on response to HOCl, and the fluorescence intensity increased more than 600 times after addition of HOCl. In the range of HOCl concentration from 0 to 6.0 μmol/L, the fluorescence intensity had a good linear relationship with HOCl concentration ( R2=0.997), the detection limit was 1.40 nmol/L, and the naked eye detection as low as 0.25 μmol/L and rapid response (<3 s) can be achieved under 1.0 μmol/L HOCl. The sensing mechanism of probe PIOCl for HOCl was verified by NMR, HRMS and density function theory calculations. Using fluorescence imaging technology, the endogenous and exogenous HOCl has been successfully detected, which indicates that probe PIOCl has potential application prospects in analytical detection and pathological analysis.

Cite this article

Yun Zhao , Yanfang Li , Rongxiao Li , Yaqing Wang , Xiaoxia Fan . A New Fluorescent Probe for Hypochlorous Acid Based on Chlorinium Ions Recognition Mechanism and Its Bioimaging Research in Living Cells[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1974 -1981 . DOI: 10.6023/cjoc202101038

References

[1]
Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B. Chem. Rev. 2017, 117, 10043.
[2]
Wu, D.; Chen, L. Y.; Xu, Q. L.; Chen, X. Q.; Yoon, J. Y. Acc. Chem. Res. 2019, 52, 2158.
[3]
Wang Y. B.; Zhao B. X. Chin. J. Org. Chem. 2016, 36, 1539. (in Chinese).
[3]
(王延宝, 赵宝祥, 有机化学, 2016, 36, 1539.)
[4]
Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S. J.; Zhu, H.; Sivaraman, B.; Peng, J.; Xu, Q. H.; Chang, Y. T. J. Am. Chem. Soc. 2015, 137, 5930.
[5]
Pattison, D. I.; Davies, M. J. Chem. Res. Toxicol. 2001, 14, 1453.
[6]
Wei, P.; Liu, L.; Yuan, W.; Yang, J.; Li, R.; Yi, T. Sci. China Chem. 2020, 63, 1153.
[7]
Nathan, C.; Cunningham-Bussel, A. Nat. Rev. Immunol. 2013, 13, 349.
[8]
Ma, C.; Zhong, G.; Zhao, Y.; Zhang, P.; Fu, Y.; Shen, B. Spectrochim. Acta A 2020, 240, 118545.
[9]
Yue, Y.; Huo, F.; Yin, C.; Escobedo, J. O.; Strongin, R. M. Analyst 2016, 141, 1859.
[10]
Zhang, Y. R.; Liu, Y.; Feng, X.; Zhao, B. X. Sens. Actuators B: Chem. 2017, 240, 18.
[11]
Yu Q., Chen X. L., Liu H., Zhang Q. L. Chin. J. Org. Chem. 2020, 40, 1206. (in Chinese).
[11]
(余青, 陈晓丽, 刘华, 张奇龙, 有机化学, 2020, 40, 1206.)
[12]
Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820,.
[13]
He, L.; Xiong, H.; Wang, B.; Zhang, Y.; Wang, J.; Zhang, H.; Li, H.; Yang, Z.; Song, X. Anal. Chem. 2020, 92, 11029,.
[14]
Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. J. Biol. Chem. 1991, 266, 4244,.
[15]
Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 10324,.
[16]
Lou, Z.; Li, P.; Han, K. Acc. Chem. Res. 2015, 48, 1358,.
[17]
Zhang, H.; Liu, J.; Liu, C.; Yu, P.; Sun, M.; Yan, X.; Guo, J.-P.; Guo, W. Biomaterials 2017, 133, 60,.
[18]
Jiao C. P., Liu Y. Y., Lu W. J., Zhang P. P., Wang Y. F. Chin. J. Org. Chem. 2019, 39, 591. (in Chinese).
[18]
(矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风, 有机化学, 2019, 39, 591.)
[19]
Xie, X.; Wu, T.; Wang, X.; Li, Y.; Wang, K.; Zhao, Z.; Jiao, X.; Tang, B. Chem. Commun. 2018, 54, 11965.
[20]
Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016, 45, 2976.
[21]
de la Mare, P. B. D.; Hilton, I. C.; Vernon, C. A. J. Chem. Soc. (Resumed) 1960,4039.
[22]
Ren, T.-B.; Xu, W.; Zhang, Q.-L.; Zhang, X.-X.; Wen, S.-Y.; Yi, H.-B.; Yuan, L.; Zhang, X.-B. Angew. Chem. Int. Ed. 2018, 57, 7473.
[23]
Wu, M. Y.; Li, K.; Hou, J. T.; Huang, Z.; Yu, X. Q. Org. Biomol. Chem. 2012, 10, 8342.
[24]
Weng, J.; Mei, Q.; Zhang, B.; Jiang, Y.; Tong, B.; Fan, Q.; Ling, Q.; Huang, W. Analyst 2013, 138, 6607.
[25]
Xiao, H.; Xin, K.; Dou, H.; Yin, G.; Quan, Y.; Wang, R. Chem. Commun. 2015, 51, 1442.
[26]
Wang, Y.; Wu, L.; Liu, C.; Guo, B.; Zhu, B.; Wang, Z.; Duan, Q.; Ma, Z.; Zhang, X. J. Mater. Chem. B 2017, 5, 3377.
[27]
Zhi, X.; Qian, Y. Talanta 2021, 222, 121503.
[28]
Ma, J.; Yan, C.; Li, Y.; Duo, H.; Li, Q.; Lu, X.; Guo, Y. Chem.-Eur. J. 2019, 25, 7168.
[29]
Lu, P.; Zhang, X.; Ren, T.; Yuan, L. Chin. Chem. Lett. 2020, 31, 2980.
[30]
Hileman, E. O.; Liu, J.; Albitar, M.; Keating, M. J.; Huang, P. Cancer Chemother. Pharmacol. 2004, 53, 209.
[31]
To?a, M.; Paizs, C.; Majdik, C.; Moldovan, P.; Novák, L.; Kolonits, P.; Szabó, é.; Poppe, L.; Irimie, F.-D. J. Mol. Catal. B: Enzym. 2002, 17, 241.
[32]
Yu, F.; Song, P.; Li, P.; Wang, B.; Han, K. Chem. Commun. 2012, 48, 7735.
[33]
Jia, P.; Zhuang, Z.; Liu, D.; Chen, Y.; Tian, B.; Liu, C.; Li, Z.; Zhu, H.; Yu, Y.; Zhang, X.; Sheng, W.; Huang, S.; Zhu, B. Sens. Actuators B: Chem. 2020, 305, 127460.
[34]
Liu, F.; Du, J.; Song, D.; Xu, M.; Sun, G. Chem. Commun. 2016, 52, 4636.
[35]
Xiao, H. D.; Li, J. H.; Zhao, J.; Yin, G.; Quan, Y. W.; Wang, J.; Wang, R. Y. J. Mater. Chem. B 2015, 3, 1633.
[36]
Feng, H.; Wang, Y.; Liu, J.; Zhang, Z.; Yang, X.; Chen, R.; Meng, Q.; Zhang, R. J. Mater. Chem. B 2019, 7, 3909.
Outlines

/