ARTICLES

Biomimetic Intramolecular Diels-Alder Reaction to Construct the Tetrahydroindane Core of Elansolid A1/A2

  • Qi Yu ,
  • Shuai Yang ,
  • Congyun Tang ,
  • Lin Peng ,
  • Zhili Zuo ,
  • Liangliang Wang
Expand
  • a School of Food and Chemical Engineering, Shaoyang University, Shaoyang, Hunan 422000
    b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201

Received date: 2021-02-06

  Revised date: 2021-03-30

  Online published: 2021-04-06

Supported by

“Light of West China” Program; Youth Innovation Promotion Association of the Chinese Academy of Sciences; National Natural Science Foundation of China(21772207); “Thousand Talents Program” of Yunnan Province; Program from Education Department of Hunan Province(19c1655)

Abstract

The Elansolid A1/A2 is metabolite from the gliding bacteriumChitinophaga sanctiiand shows antibiotic activity against Gram-positive bacteria. Up to now, the total synthesis of this natural product has not been reported yet due to its structure complexity, which arises from thetrans-tetrahydroindane unit and (Z)-(E)-(Z) triene motif as well as a 19-member macrolactone. In this study, two newO-functionalized substrates were synthesized to undergo the biomimetic intramolecular Diels-Alder reactions (IMDA) catalyzed by a chiral phosphoric acid to build the keytrans-tetrahydroindane core of Elansolid A1/A2 via a vinylicp-quinone methide intermediate. This result shows that an improveddr (1.8∶1) of IMDA reaction and shorter synthetic steps could be achieved.

Cite this article

Qi Yu , Shuai Yang , Congyun Tang , Lin Peng , Zhili Zuo , Liangliang Wang . Biomimetic Intramolecular Diels-Alder Reaction to Construct the Tetrahydroindane Core of Elansolid A1/A2[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2820 -2830 . DOI: 10.6023/cjoc202102021

References

[1]
Steinmetz, H.; Gerth, K.; Jansen, R.; Schlager, N.; Dehn, R.; Reinecke, S.; Kirschning, A.; Meller, R. Angew. Chem.,Int. Ed. 2011, 50,532.
[2]
(a) Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Meller, R. Chem.-Eur. J. 2011, 17,7739.
[2]
(b) Dehn, R.; Katsuyama, Y.; Weber, A.; Gerth, K.; Jansen, R.; Steinmetz, H.; Hofle, G.; Meller, R.; Kirschning, A. Angew. Chem.,Int. Ed. 2011, 50,3882.
[3]
Wang,L. -L.; Kirschning, A. Beilstein J. Org. Chem. 2017, 13,1280.
[4]
Weber, A.; Dehn, R.; Schlager, N.; Dieter, B.; Kirschning, A. Org. Lett. 2014, 16,568.
[5]
Wang,L. -L.; Candito, D.; Drager, G.; Herrmann, J.; Meller, R.; Kirschning, A. Chem.-Eur. J. 2017, 23,5291.
[6]
Wang,L. -L.; Candito, D.; Dräger, G.; Kirschning, A. Eur. J. Org. Chem. 2017,5582.
[7]
Walker,M. A.; Heathcock,C. H. J. Org. Chem. 1991, 56,5747.
[8]
Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74,87.
[9]
Sun, H.; Abbott,J. R.; Roush,W. R. Org. Lett. 2011, 13,2734.
[10]
Our selected recent study on chiral phosphoric acid CPA:. Wang,L. -L.; Jiang, T.; Li,P. -H.; Sun,R. -J.; Zuo, Z. Adv. Synth. Catal. 2018, 360,4832.
[11]
Selected reviews and examples on chiral phosphoric acid: (a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114,9047.
[11]
(b) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2017, 117,10608.
[11]
(c) Li, S.; Lü, J.; Luo, S. Acta Chim. Sinica 2018, 76,869 (in Chinese).
[11]
( 李速家, 吕健, 罗三中, 化学学报, 2018, 76,869.)
[11]
(d) Zhang, L.; Luo, S.; Cheng,J. -P. Angew. Chem.,Int. Ed. 2013, 52,9786.
Outlines

/