ARTICLES

N,N-Dimethylformamide (DMF)-Promoted SpecificN-Alkylation of Hydroxyl N-Heterocycles with Organohalides: A Direct and Efficient Method for Synthesis of Pyridone Derivatives

  • Feng Han ,
  • Ting Wang ,
  • Bin Feng ,
  • Qing Xu
Expand
  • a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035
    b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002
* Corresponding author. E-mail:

Received date: 2021-02-12

  Revised date: 2021-03-16

  Online published: 2021-04-06

Supported by

National Natural Science Foundation of China(21672163); Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars(LR14B020002)

Abstract

In base-free specificN-alkylation of hydroxylN-heterocycles with organohalides producing pyridone-type products,N,N-dimethylformamide (DMF) was found to be the best solvent for having the most prominent solvent effect among the usual solvents. This not only led to milder reaction conditions and higher yields of the products, but also could broaden the substrate scope of the reaction. Mechanistic studies and the literature revealed that, in addition to the usual solvent effect, DMF can decompose to produce dimethylamine during the reaction, which then works as a base to promote the reaction.

Cite this article

Feng Han , Ting Wang , Bin Feng , Qing Xu . N,N-Dimethylformamide (DMF)-Promoted SpecificN-Alkylation of Hydroxyl N-Heterocycles with Organohalides: A Direct and Efficient Method for Synthesis of Pyridone Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2831 -2838 . DOI: 10.6023/cjoc202102026

References

[1]
(a) Li, Q.; Mitscher,L. A.; Shen, L. Med. Res. Rev. 2000, 20,231.
[1]
(b) Jessen,H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27,1168.
[1]
(c) Vite-Caritino, H.; Gademann, H.; Mendez-Lucio, O.; Reyes, H.; Cabrera, A.; Chavez, D.; Medina-Franco,J. L. RSC Adv. 2016, 6,2119.
[1]
(d) Surup, F.; Wagner, O.; Frieling, J.; Schleicher, M.; Oess, S.; Müller, P.; Grond, S. J. Org. Chem. 2007, 72,5085.
[1]
(e) Wang, J.; Tao, H.; Jin, M.; Li, L.; Xiao, Y.; Li, J.; Qin, Z. Chin. J. Org. Chem. 2019, 39,1044 (in Chinese).
[1]
( 王家尧, 陶晗, 金蜜, 李丽莎, 肖玉梅, 李佳奇, 覃兆海, 有机化学, 2019, 39,1044.)
[2]
(a) Wendt,J. A.; Gauvreau,P. J.; Bach,R. D. J. Am. Chem. Soc. 1994, 116,9921.
[2]
(b) Wall,M. E. Med. Res. Rev. 1998, 18,299.
[2]
(c) Garrett,C. A.; Prasad, K. Adv. Synth. Catal. 2004, 346,889.
[2]
(d) Purser, S.; Moore,P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37,320.
[2]
(e) Richeldi, L.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2011, 10,489.
[2]
(f) Pfefferkorn,J. A.; Lou, J.; Minich,M. L.; Filipski,K. J.; He, M.; Zhou, R.; Ahmed, S.; Benbow, J.; Perez,A. G.; Tu, M.; Litchfield, J.; Sharma, R.; Metzler, K.; Bourbonais, F.; Huang, C.; Beebe,D. A.; Oates,P. J. Bioorg. Med. Chem. Lett. 2009, 19,3247.
[2]
(g) Xie,L. -Y.; Duan, Y.; Lu,L. -H.; Li,Y. -J.; Peng, S.; Wu, C.; Liu,K. -J.; Wang, Z.; He,W. -M. ACS Sustainable Chem. Eng. 2017, 5,10407.
[2]
(h) Xie,L. -Y.; Qu, J.; Peng, S.; Liu,K. -J.; Wang, Z.; Ding,M. -H.; Wang, Y.; Cao, Z.; He,W. -M. Green Chem. 2018, 20,760.
[2]
(i) Ye, M.; Qiu, S.; Yin, J. Chin. J. Org. Chem. 2017, 37,667 (in Chinese).
[2]
( 叶明琰, 邱少中, 殷国栋, 有机化学, 2017, 37,667.)
[2]
(j) Bai, F; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38,2054 (in Chinese).
[2]
( 白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38,2054.)
[3]
(a) Ueda, N.; Konda, K.; Kono, M.; Takemoto, K.; Imoto, M. Makromol. Chem. 1968, 120,13.
[3]
(b) Pitha, J.; Ts'o,P. O.P. J. Org. Chem. 1968, 33,1341.
[3]
(c) Kaye, H. J. Polym. Sci., art B:Polym. Lett. 1969, 7,1.
[4]
(a) Hopkins,G. C.; Jonak,J. P.; Minnemeyer,H. J.; Tieckelmann, H. J. Org. Chem. 1967, 32,4040.
[4]
(b) Sugahara, M.; Moritani, Y.; Kuroda, T.; Kondo, K.; Shimadzu, H.; Ukita, T. Chem. Pharm. Bull. 2000, 48,589.
[4]
(c) Nishiwaki, N.; Hisaki, M.; Ono, M.; Ariga, M. Tetrahedron 2009, 65,7403.
[5]
Chuang,N. M.; Tieckelmann, H. J. Org. Chem. 1970, 35,2517.
[6]
Liu, H.; Ko,S. B.; Josien, H.; Curran,D. P. Tetrahedron Lett. 1995, 36,8917.
[7]
Sato, T.; Yoshimatsu, K.; Otera, J. Synlett 1995,845.
[8]
Lanni,E. L.; Bosscher,M. A.; Ooms,B. D.; Shandro,C. A.; Ellsworth,B. A.; Anderson,C. E. J. Org. Chem. 2008, 73,6425.
[9]
Sosnickii,J. G.; Struk, Ł.; Idzik, T.; Maciejewska, G. Tetrahedron 2014, 70,8624.
[10]
Conreaux, D.; Bossharth, E.; Monteiro, N.; Desbordes, P.; Balme, G. Tetrahedron Lett. 2005, 46,7917.
[11]
Vavilina, G.; Zicmanis, A.; Mekss, P.; Klavins, M. Chem. Heterocycl. Compd. 2008, 44,549.
[12]
Iida, H.; Suda, M.; Nakajima, E.; Hakamatsuka, H.; Nagash- ima, Y.; Joho, K.; Amemiya, K.; Moromizato, T.; Matsumoto, K.; Murakami, Y.; Hamana, H. Heterocycles 2010, 81,2057.
[13]
(a) Yeung,C. S.; Hsieh,T. H.H.; Dong,V. M. Chem. Sci. 2011, 2,544.
[13]
(b) Pan, S.; Ryu, N.; Shibata, T. Org. Lett. 2013, 15,1902.
[14]
Mishra,A. K.; Morgon,N. H.; Sanyal, Souza,S. A. R.; Biswas, S. Adv. Synth. Catal. 2018, 360,3930.
[15]
(a) Ballesteros, P.; Claramunt,R. M.; Elguero, J. Tetrahedron 1987, 43,2557.
[15]
(b) Loupy, A.; Philippon, N.; Pigeon, P.; Galons, H. Heterocycles 1991, 32,1947.
[15]
(c) Cherng,Y. J. Tetrahedron 2002, 58,4931.
[15]
(d) Liu, Q.; Lu, Z.; Ren, W.; Shen, K.; Wang, Y.; Xu, Q. Chin. J. Chem. 2013, 31,764.
[16]
(a) Shi, X.; Guo, J.; Ye, M.; Xu, Q. Chem.-Eur. J. 2015, 21,9988.
[16]
(b) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19,2945.
[16]
(c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Xu, Q.; Zhang, X.; Cao, H. ChemSusChem 2019, 12,3043.
[16]
(d) Liu, H.; Han, F.; Li, H.; Liu, J.; Xu, Q. Org. Biomol. Chem. 2020, 18,7079.
[17]
(a) Chen, H.; Dai, W.; Chen, Y.; Xu, Q.; Chen, J.; Yu, L.; Zhao, Y.; Ye, M.; Pan, Y. Green Chem. 2014, 16,2136.
[17]
(b) Li, Y.; Chen, H.; Liu, J.; Wan, X.; Xu, Q. Green Chem. 2016, 18,4865.
[17]
(c) Ma, X.; Li, B.; Xiao, Y.; Yu, X.; Su, C.; Xu, Q. Chin. J. Org. Chem. 2017, 37,2034 (in Chinese).
[17]
( 马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37,2034.)
[18]
(a) Ma, X.; Su, C.; Xu, Q. Top. Curr. Chem. 2016, 374(3),27.
[18]
(b) Xu, Q.; Li, Q. Chin. J. Org. Chem. 2013, 33,18 (in Chinese).
[18]
( 徐清, 李强, 有机化学, 2013, 33,18.)
[18]
(c) Xu, Q.; Li, Q.; Zhu, X.; Chen, J. Adv. Synth. Catal. 2013, 355,73.
[18]
(d) Xu, Q.; Chen, J.; Liu, Q. Adv. Synth. Catal. 2013, 355,697.
[18]
(e) Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Angew. Chem., nt. Ed. 2014, 53,2259.
[18]
(f) Xu, Q.; Xie, H.; Chen, P.; Yu, L.; Chen, J.; Hu,X. G. Green Chem. 2015, 17,2774.
[18]
(g) Xu, Q.; Xie, H.; Zhang, E.; Ma, X.; Chen, J.; Yu, X.; Li, H. Green Chem. 2016, 18,3940.
[18]
(h) Ma, X.; Yu, L.; Su, C.; Yang, Y.; Li, H.; Xu, Q. Adv. Synth. Catal. 2017, 359,1649.
[18]
(i) Ma, X.; Xu, Q.; Li, H.; Su, C.; Yu, L.; Zhang, X.; Cao, H.; Han, L. Green Chem. 2018, 20,3408.
[18]
(j) Ma, X.; Yu, J.; Yan, R.; Xu, Q. J. Org. Chem. 2019, 84,11294.
[19]
Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83,6769.
[20]
(a) Muzart, J. Tetrahedron 2009, 65,8313.
[20]
(b) Ding, S.; Jiao, N. Angew. Chem., nt. Ed. 2012, 51,9226.
[21]
Since addition of more than stoichiometric amount of base may lead to competing O-alkylation reaction to give ether byproducts (see Ref. [4]), reactions with addition of more amounts of Et3N was not investigated.
[22]
After our finding that byproduct HBr could work as the catalyst to promote the O to N migratory rearrangement of pyridyl ethers to pyridone products, Biswas et al. reported a similar finding using HOTf as the catalyst, see Ref. [14].
[23]
Kumar, D.; Vemula,S. R.; Cook,G. R. Green Chem. 2015, 17,4300.
[24]
Breugst, M.; Mayr, H. J. Am. Chem. Soc. 2010, 132,15380.
[25]
Hand,E. S.; Paudler,W. W. J. Org. Chem. 1978, 43,658.
[26]
Yu, Y.; Niphakis,M. J.; Georg,G. I. Org. Lett. 2011, 13,5932.
[27]
Fujita, R.; Hoshino, M.; Tomisawa, H. Chem. Pharm. Bull. 2006, 54,334.
[28]
Verhelst, T.; Verbeeck, S.; Ryabtsova, O.; Depraetere, S.; Maes,B. U. Org. Lett. 2011, 13,272.
[29]
Chen, D.; Zhang, Z.; Bao, W. J. Org. Chem. 2010, 75,5768.
[30]
Huang, L.; Gu, Y.; Furstner, A. Chem.-Asian J. 2019, 14,4017.
Outlines

/