Chinese Journal of Organic Chemistry >
Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives
Received date: 2021-01-16
Revised date: 2021-03-23
Online published: 2021-04-12
Supported by
National Natural Science Foundation of China(21978144); National Natural Science Foundation of China(21702117); National Natural Science Foundation of China(21776148); Key Research & Development Program of Shandong Province(2018GSF118224); Key Research & Development Program of Shandong Province(2019GSF108020); Key Research & Development Program of Shandong Province(2019RKB01027); Support Plan on Science and Technology for Youth Innovation of Universities in Shandong Province(2019KJM002); Opening Funding of Qingdao University of Science & Technology(QUSTHX201916); Opening Funding of Qingdao University of Science & Technology(QUSTHX202004)
The pharmaceutically significant 3-mono-substituted tetrahydroquinoline derivatives carryingortho-hydroxy- benzoyl moiety are constructed via EtOH mediated cascade Knoevenagel condensation/[1,5]-hydride transfer/cyclization/hydrolysis/decarboxylation from 4-hydroxycoumarins ando-aminobenzaldehydes. In addition, the substrate-controlled diverse syntheses also could be achieved, and a variety of the zwitterionic biscoumarin derivatives are facilely provided under catalyst- and solvent-free conditions at room temperature.
Xiaoyu Yang , Jianlin Liu , Fangzhi Hu , Hongmei Sun , Liang Wang , Shuai-Shuai Li . Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2788 -2799 . DOI: 10.6023/cjoc202101024
[1] | (a) Takemura, T.; Kamo, T.; Sakuno, E.; Hiradate, S.; Fujii, Y. J. Trop. For. Sci. 2013, 25,268. |
[1] | (b) Mangasuli,S. N.; Hosamani,K. M.; Devarajegowda,H. C.; Kurjogi,M. M.; Joshi,S. D. Eur. J. Med. Chem. 2018, 146,747. |
[1] | (c) Keri,R. S.; Sasidhar,B. S.; Nagaraja,B. M.; Santos,M. A. Eur. J. Med. Chem. 2015, 100,257. |
[1] | (d) Amin,K. M.; Eissa,A. A.M.; Abou-Seri,S. M.; Awadallah,F. M.; Hassan,G. S. Eur. J. Med. Chem. 2013, 60,187. |
[1] | (e) Paul, K.; Bindal, S.; Luxami, V. Bioorg. Med. Chem. Lett. 2013, 23,3667. |
[1] | (f) Shi, L.; Li, Z.; Cui, X.; Zhu, T.; Pang, X.; Li, L.; Luo, D.; Liu, F.; Zhao, B.; Long, Y.; Zhang, S. Chin. J. Org. Chem. 2020, 40,1598 (in Chinese). |
[1] | ( 时蕾, 李子秋, 崔鑫鑫, 朱挺, 庞晓静, 李龙辉, 罗德福, 刘方芳, 赵冰玉, 龙跃, 张赛扬, 有机化学, 2020, 40,1598.) |
[2] | For selected recent examples on 4-hydroxycoumarin as synthon, see: (a) Miao, M.; Luo, Y.; Li, H.; Xu, X.; Chen, Z.; Xu, J.; Ren,, H. J. Org. Chem. 2016, 81,5228. |
[2] | (b) Chen, Y.; Wang, Y.; Zhong, R.; Li, J. J. Org. Chem. 2020, 85,10638. |
[2] | (c) Mukherjee, S.; Pramanik, A. ACS Sustainable Chem. Eng. 2020, 8,403. |
[2] | (d) Xu, R.; Li, K.; Wang, J.; Lu, J.; Pan, L.; Zeng, X.; Zhong, G. Chem. Commun. 2020, 56,8404. |
[2] | (e) Sharma, K.; Neog, K.; Gogoi, P. Org. Lett. 2020, 22,73. |
[2] | (f) Zhu, F.; Wang, Y.; He, M.; Yan, Z.; Lin, S. Chin. J. Org. Chem. 2019, 39,1175 (in Chinese). |
[2] | ( 朱福元, 王彦梅, 何明闯, 严兆华, 林森, 有机化学, 2019, 39,1175.) |
[2] | (g) Rezaei, R.; Moezzi, F.; Doroodmand,M. M. Chin. Chem. Lett. 2014, 25,183. |
[2] | (h) Chen, Z.; Bi, J.; Su, W. Chin. J. Chem. 2013, 31,507. |
[2] | (i) Hamid Reza, S.; Moones, H. Chin. J. Chem. 2009, 27,1795. |
[3] | (a) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard,D. -H.; Boutin,J. A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.; Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. J. Med. Chem. 2015, 58,7512. |
[3] | (b) Ruble,J. C.; Hurd,A. R.; Johnson,T. A.; Sherry,D. A.; Barbachyn,M. R.; Toogood,P. L.; Bundy,G. L.; Graber,D. R.; Kamilar,G. M. J. Am. Chem. Soc. 2009, 131,3991. |
[3] | (c) Taylor,S. N.; Marrazzo, J.; Batteiger,B. E.; Hook,E. W.; Seña,A. C.; Long, J.; Wierzbicki,M. R.; Kwak, H.; Johnson,S. M.; Lawrence, K.; Mueller, J. N. Engl. J. Med. 2018, 379,1835. |
[3] | (d) Yu, L.; Ding, Q.; Song, C.; Chang, J. Chin. J. Org. Chem. 2021, 41,2507 (in Chinese). |
[3] | ( 余璐璐, 丁群山, 宋传君, 常俊标, 有机化学, 2021, 41,2507.) |
[4] | For reviews on tetrahydroquinolines, see: (a) Sridharan, V.; Suryavanshi, P.; Menendez,,J. C. Chem. Rev. 2011, 111,7157. |
[4] | (b) Muthukrishnan, I.; Sridharan, V.; Menendez,J. C. Chem. Rev. 2019, 119,5057. |
[4] | For representative examples on tetrahydroquinolines, see: (c) Jadhav,A. M.; Pagar,V. V.; Liu,R. -S. Angew. Chem.,Int. Ed. 2012, 51,11809. |
[4] | (d) Zhang, X.; Han, X.; Lu, X. Org. Lett. 2015, 17,3910. |
[4] | (e) Leth,L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen,M. K.; Bitsch,E. A.; Jørgensen,K. A. Angew. Chem.,Int. Ed. 2016, 55,15272. |
[4] | (f) Bianchini, G.; Ribelles, P.; Becerra, D.; Ramos,M. T.; Menendez,J. C. Org. Chem. Front. 2016, 3,412. |
[4] | (g) Xu,G. -Q.; Li,C. -G.; Liu,M. -Q.; Cao, J.; Luo,Y. -C.; Xu,P. -F. Chem. Commun. 2016, 52,1190. |
[4] | (h) Zhang, Z.; Song, X.; Li, G.; Li, X.; Zheng, D.; Zhao, X.; Miao, H.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2021, 32,1423. |
[4] | (i) Qian,L. F.; Zhou,Y. H.; Zhang, W. Chin. Chem. Lett. 2009, 20,805. |
[4] | (j) Zhang, Z.; Zhang, Q.; Yan, Z.; Liu, Q. J. Org. Chem. 2007, 72,9808. |
[5] | For reviews on hydride transfer reactions, see: (a) Tobisu, M.; Chatani,, N. Angew. Chem.,Int. Ed. 2006, 45,1683. |
[5] | (b) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19,13274. |
[5] | (c) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356,1137. |
[5] | (d) Pan,S. C. Beilstein J. Org. Chem. 2012, 8,1374. |
[5] | (e) Haibach,M. C.; Seidel, D. Angew. Chem.,Int. Ed. 2014, 53,5010. |
[5] | (f) Kwon,S. J.; Kim,D. Y. Chem. Rec. 2016, 16,1191. |
[5] | (g) Xiao, M.; Zhu, S.; Shen, Y.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2018, 38,328 (in Chinese). |
[5] | 肖明艳, 朱帅, 沈耀滨, 王亮, 肖建, 有机化学, 2018, 38,328.). |
[5] | Other representative works on redox-neutral reactions, see:. |
[5] | (g) Yang, L.; Wei, L.; Wan,J. -P. Chem. Commun. 2018, 54,7475. |
[5] | (h) Yang, L.; Wan,J. -P. Green Chem. 2020, 22,3074. |
[5] | (i) Huang, H.; Deng, K.; Deng,G. -J. Green Chem. 2020, 22,8243. |
[5] | (j) Xiao, K.; Huang, Y.; Huang, P. Acta Chim. Sinica 2012, 70,1917. |
[5] | (k) |
[6] | For selected examples on electron-withdrawing groups substituted alkenes as hydride acceptors, see: (a) Mahoney,S. J.; Moon,D. T.; Hollinger, J.; Fillion,, E. Tetrahedron Lett. 2009, 50,4706. |
[6] | (b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12,1732. |
[6] | (c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133,2424. |
[6] | (d) Jeong,H. I.; Youn,T. H.; Kim,D. Y. Bull. Korean Chem. Soc. 2017, 38,421. |
[6] | (e) Briones,J. F.; Basarab,G. S. Chem. Commun. 2016, 52,8541. |
[6] | (f) Yoshida, T.; Mori, K. Chem. Commun. 2017, 53,4319. |
[6] | (g) Yamazaki, S.; Naito, T.; Tatsumi, T.; Kakiuchi, K. ChemistrySelect 2018, 3,4505. |
[7] | Representative one-pot reactions for construction of tetrahydroquinoline skeletons, see: (a) Wang,P. -F.; Jiang,C. -H.; Wen, X.; Xu,Q. -L.; Sun,, H. J. Org. Chem. 2015, 80,1155. |
[7] | (b) Bai, G.; Dong, F.; Xu, L.; Liu, Y.; Wang, L.; Li,S. -S. Org. Lett. 2019, 21,6225. |
[7] | (c) Chen, C.; Xu, L.; Wang, L.; Li,S. -S. Org. Biomol. Chem. 2018, 16,7109. |
[7] | (d) Li,S. -S.; Lv, X.; Ren, D.; Shao,C. -L.; Liu, Q.; Xiao, J. Chem. Sci. 2018, 9,8253. |
[7] | (e) Yang, X.; Hu, F.; Wang, L.; Xu, L.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267. |
[7] | (f) Shen,Y. -B.; Wang,L. -X.; Sun,Y. -M.; Dong,F. -Y.; Yu, L.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85,1915. |
[7] | (g) Zhu, S.; Chen, C.; Xiao, M.; Yu, L.; Wang, L.; Xiao, J. Green Chem. 2017, 19,5653. |
[7] | (h) Liu, S.; Wang, H.; Wang, B. Org. Biomol. Chem. 2020, 18,8839. |
[8] | (a) Li,S. -S.; Zhu, S.; Chen, C.; Duan, K.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21,1058. |
[8] | (b) Li,S. -S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Org. Lett. 2018, 20,138. |
[8] | (c) Zhu, S.; Chen, C.; Duan, K.; Sun,Y. -M.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,8440. |
[8] | (d) Lü, X.; Hu, F.; Duan, K.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,1833. |
[8] | (e) Shi, H.; Xu, L.; Ren, D.; Wang, L.; Guo, W.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267. |
[8] | (f) Duan, K.; Shi, H.; Wang,L. -X.; Li,S. -S.; Xu L.; Xiao, J. Org. Chem. Front. 2020, 7,2511. |
[8] | (g) Yuan, K.; Dong, F.; Yin, X.; Li,S. -S.; Wang, L.; Xu, L. Org. Chem. Front. 2020, 7,3868. |
[8] | (h) Xing, Y.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Asian J. Org. Chem. 2020, 9,1787. |
[8] | (i) Yang, X.; Wang, L.; Hu, F.; Xu, L.; Li, S.; Li,S. -S. Org. Lett. 2021, 23,358. |
[8] | (j) Guo, M.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Org. Chem. Front. 2021, 8,2224. |
[9] | (a) Chauncey,M. A.; Grundon,M. F.; Rutherford,M. J. J. Chem. Soc.,Chem. Commun. 1988, 0,527. |
[9] | (b) Zhang, K.; Han, H.; Wang, L.; Zhang, Z.; Wang, Q.; Zhang, W.; Bu, Z. Chem. Commun. 2019, 55,13681. |
[10] | (a) Musa,M. A.; Cooperwood,J. S.; Khan,M. O.F. Curr. Med. Chem. 2008, 15,2664. |
[10] | (b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke,S. L.; Lee,K. H. Med. Res. Rev. 2003, 23,322. |
[10] | (c) Anand, P.; Singh, B.; Singh, N. Bioorg. Med. Chem. 2012, 20,1175. |
[10] | (d) Saeed, A.; Haroon, M.; Muhammad, F.; Larik,F. A.; Hesham,E. S.; Channar,P. A. J. Organomet. Chem. 2017, 834,88. |
[10] | (e) Khan,K. M.; Iqbal, S.; Lodhi,M. A.; Maharvi,G. M.; Ullah, Z.; Choudhary,M. I.; Rahman, A.; Perveen, S. Bioorg. Med. Chem. 2004, 12,1963. |
[11] | (a) Bavandia, H.; Habibia, Z.; Yousefi, M. Bioorg. Chem. 2020, 103,104139. |
[11] | (b) Zeynizadeh, B.; Gilanizadeh, M. New J. Chem. 2019, 43,18794. |
[11] | (c) Mathavan, S.; Kannan, K.; Yamajala,R. B.R.D. Org. Biomol. Chem. 2019, 17,9620. |
[11] | (d) Yang, C.; Su,W. -Q.; Xu,D. -Z. RSC Adv. 2016, 6,99656. |
/
〈 |
|
〉 |