ARTICLES

Ligand-Free Pd-Catalyzed Hydrophosphorylation of Internal Alkynes for the Synthesis of E-Vinylphosphonates

  • Zhenli Xu ,
  • Zongxue Zhang ,
  • Chenxiang Meng ,
  • Xiaoya Zhang ,
  • Kai Xu ,
  • Lantao Liu ,
  • Tao Wang ,
  • Haiyun Xu ,
  • Guoliang Mao
Expand
  • a College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318
    b Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
    c College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001
*Corresponding authors. E-mail: ;

Received date: 2021-03-22

  Revised date: 2021-04-13

  Online published: 2021-05-08

Supported by

National Natural Science Foundation of China(21572126); National Natural Science Foundation of China(21202095); Technicians Troop Construction Projects of Henan Province(C20150030); Program of Science and Technology Innovation Talents of Henan Province(184100510011); Natural Science Foundation of Henan Province(212300410379); Key Scientific and Technological Project of Henan Province(192102110222)

Abstract

A ligand-free Pd-catalyzed hydrophosphorylation of internal alkynes with diphenyl H-phosphonate in various alcohols for the synthesis of E-vinylphosphonates has been reported. This pratical and versatile three-component reaction involves the syn-addition of diphenyl H-phosphonate towards relatively inactive internal alkynes, as well as the concomitant transesterification of diphenyl H-phosphonate. The remarkable features include high stereoselectivity, wide substrate scope and the absence of additional ligands.

Cite this article

Zhenli Xu , Zongxue Zhang , Chenxiang Meng , Xiaoya Zhang , Kai Xu , Lantao Liu , Tao Wang , Haiyun Xu , Guoliang Mao . Ligand-Free Pd-Catalyzed Hydrophosphorylation of Internal Alkynes for the Synthesis of E-Vinylphosphonates[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3264 -3271 . DOI: 10.6023/cjoc202103038

References

[1]
For reviews: see:
[1]
(a) Moonen, K.; Laureyn, O.; Stevens, C. V. Chem. Rev. 2004, 104, 6177.
[1]
(b) Demmer, C. S.; Larsen, N. K.; Bunch, L. Chem. Rev. 2011, 111, 7981.
[1]
(c) Queffelec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Chem. Rev. 2012, 112, 3777.
[1]
(d) Galezowska, J.; Gumienna-Kontecka, E. Coord. Chem. Rev. 2012, 256, 105.
[1]
(e) Soller, B. S.; Salzinger, S.; Rieger, B. Chem. Rev. 2016, 116, 1993.
[1]
(f) Horsman, G. P.; Zechel, D. L. Chem. Rev. 2017, 117, 5704.
[1]
(g) Shi, B. C.; Fang, Y. W.; Zhang, L.; Jin, X. P.; Wu, Y. H.; Fang, M.; Yang, Y. F.; Chen, C. Chin. J. Org. Chem. 2016, 36, 673. (in Chinese)
[1]
(方烨汶, 张莉, 金小平, 武永辉, 方媚, 杨宇飞, 陈冲, 有机化学, 2016, 36, 673.)
[1]
(h) Ye, X. Y.; Peng, L.; Bao, X. Z.; Tan, C. H.; Wang, H. Green Synth. Catal. 2021, 2, 6.
[2]
(a) Michaelis, A.; Kaehne, R. Ber. Dtsch. Chem. Ges. 1898, 31, 1048.
[2]
(b) Arbuzov, A. E. J. Russ. Phys. Chem. Soc. 1906, 38, 687.
[2]
(c) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 3595.
[2]
(d) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
[2]
(e) Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909.
[2]
(f) Russell, G. A.; Yao, C. F. J. Org. Chem. 1992, 57, 6508.
[2]
(g) Zhong, P.; Huang, X.; Xiong, Z. X. Synlett 1999, 721.
[2]
(h) Zhong, P.; Xiong, Z. X.; Huang, X. Synth. Commun. 2000, 30, 273.
[2]
(i) Kabalka, G. K.; Guchhait, S. K. Org. Lett. 2003, 5, 729.
[2]
(j) Thielges, S.; Bisseret, P.; Eustache, J. Org. Lett. 2005, 7, 681.
[2]
(k) Zhuang, R. Q.; Xu, J.; Cai, Z. S.; Tang, G.; Fang, M. J.; Zhao, Y. F. Org. Lett. 2011, 13, 2110.
[2]
(l) Evano, G.; Tadiparthi, K.; Couty, F. Chem. Commun. 2011, 47, 179.
[2]
(m) Liu, L.; wang, Y. L.; Zeng, Z. P.; Xu, P. X.; Gao, Y. X.; Yin, Y. W.; Zhao, Y. F. Adv. Synth. Catal. 2013, 355, 659.
[2]
(n) Wu, Y. L.; Liu, L. L.; Yan, K. L.; Xu, P. X.; Gao, Y. X.; Zhao, Y. F. J. Org. Chem. 2014, 79, 8118.
[2]
(o) Liu, L.; Lv, Y.; Wu, Y. L.; gao, X.; Zeng, Z. P.; Gao, Y. X.; Tang, G.; Zhao, Y. F. RSC Adv. 2014, 4, 2322.
[2]
(p) Gui, Q. W.; Hu, L.; Chen, X.; Liu, J. D.; Tan, Z. Chem. Commun. 2015, 51, 13922.
[2]
(q) Xue, J. F.; Zhou, S. F.; Liu, Y. Y.; Pan, X. Q.; Zou, J. P.; Asekun, O. T. Org. Biomol. Chem. 2015, 13, 4896.
[2]
(r) Yuan, J. W.; Yang, L. R.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 87058.
[2]
(s) Liaom, L. L.; Gui, Y. Y.; Zhang, X. B.; Shen, G.; Liu, H. D.; Zhou, W. J.; Li, J.; Yu, D. G. Org. Lett. 2017, 19, 3735.
[2]
(t) Gu, J.; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.
[2]
(u) Liu, L. X.; Zhou, D.; Dong, J. Y.; Zhou, Y. B.; Yin, S. F.; Han, L. B. J. Org. Chem. 2018, 83, 4190.
[2]
(v) Wang, L.; Yang, Z.; Zhu, H. J.; Liu, H. T.; Lv, S. P.; Xu, Y. Eur. J. Org. Chem. 2019, 2019, 2138.
[2]
(w) Ghasemzadeh, M. S.; Akhlaghinia, B. New J. Chem. 2019, 43, 5341.
[2]
(x) Liu, C. W.; Ji, C. L.; Zhou, T. L.; Hong, X.; Szostak, M. Org. Lett. 2019, 21, 9256.
[2]
(y) Qiao, B. K.; Cao, H. Q.; Huang, Y. J.; Zhang, Y.; Nie, J.; Zhang, F. G.; Ma, J. A. Chin. J. Chem. 2018, 36, 809.
[2]
(z) Ren, L. J.; Ran, M. G.; Fang, X. H.; Zhao, L.; Yao, Q. L. Chin. J. Org. Chem. 2018, 38, 2791. (in Chinese)
[2]
(任林静, 冉茂刚, 方学红, 赵玲, 姚秋丽, 有机化学, 2018, 38, 2791.)
[3]
(a) Han, L. B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.
[3]
(b) Han, L. B.; Hua, R. M.; Tanaka, M. Angew. Chem. Int. Ed. 1998, 37, 94.
[3]
(c) Lai, C. B.; Xi, C. J.; Chen, C.; Ma, M. M.; Hong, X. Y. Chem. Commun. 2003, 2736.
[3]
(d) Trostyanskaya, I. G.; Beletskaya, I. P. Tetrahedron 2005, 61, 6315.
[3]
(e) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P. Russ. J. Org. Chem. 2010, 46, 1269.
[3]
(f) Ananikov, V. P.; Khemchyan, L. L.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2010, 352, 2979.
[3]
(g) Xu, Q.; Shen, R. W.; Ono, Y.; Nagahata, R.; Shimada, S.; Goto, M.; Han, L. B. Chem. Commun. 2011, 47, 2333.
[3]
(h) Khemchyan, L. L.; Ivanova, J. V.; Zalesskiy, S. S.; Ananikov, V. P.; Beletskaya, I. P.; Starikova, Z. A. Adv. Synth. Catal. 2014, 356, 771.
[3]
(i) Islas, R. E.; García, J. J. ChemCatChem 2017, 9, 4125.
[3]
(j) Chen, T. Q.; Zhao, C. Q.; Han, L. B. J. Am. Chem. Soc. 2018, 140, 3139.
[3]
(k) Wei, X. H.; Bai, C. Y.; Zhao, L. B.; Zhang, P.; Li, Z. H.; Wang, Y. B.; Su, Q. Chin. J. Chem. 2021, 39, 1855.
[4]
Kers, A.; Kers, I.; Stawinski, J.; Sobkowski, M.; Kraszewski, A. Synthesis 1995, 427.
[5]
(a) Huang, H.; Denne, J.; Yang, C. H.; Wang, H. B.; Kang, J. Y. Angew. Chem. Int. Ed. 2018, 57, 6624.
[5]
(b) Adler, P.; Pons, A.; Li, J.; Heider, J.; Brutiu, B. R.; Maulide, N. Angew. Chem. Int. Ed. 2018, 57, 13330.
[6]
(a) Xu, K.; Hu, H.; Yang, F.; Wu, Y. J. Eur. J. Org. Chem. 2013, 2013, 319.
[6]
(b) Xu, K.; Yang, F.; Zhang, G. D.; Wu, Y. J. Green Chem. 2013, 15, 1055.
[7]
Ouyang, K. B.; Xi, Z. F. Acta Chim. Sinica 2013, 71, 13.
[8]
Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K.; Lee, S. J. Org. Chem. 2010, 75, 6244
[9]
Kobayashi, Y.; William, A. D. Adv. Synth. Catal. 2004, 346, 1749.
Outlines

/