ARTICLES

Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones

  • Man Xu ,
  • Yuanzhi Xia
Expand
  • College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035
*Corresponding author.E-mail:

Received date: 2021-03-28

  Revised date: 2021-04-25

  Online published: 2021-05-08

Supported by

National Natural Science Foundation of China(21572163); National Natural Science Foundation of China(21873074)

Abstract

N-Phenoxyacetamides represent one category of typical substrates for Rh(III)-catalyzed C—H activation under external oxidant free conditions. To understand how the O-NHAc unit works as the oxidizing directing group, the mechanism for the Rh(III)-catalyzed C—H activation/annulation reactions of N-phenoxyacetamides with methyleneoxetanones was studied by density functional theory (DFT) calculations. It was uncovered that after the formation of the 7-membered rhodacycle from irreversible C—H activation and olefin insertion steps, the direct O—N bond cleavage of the internal oxidant unit to form a Rh(V)-nitrenoid species was energetically unfavorable. Instead, this intermediate underwent sequential β-H elimination/reductive elimination much more easily and formed a Rh(I) species. Once the hydrogen was transferred to the NAc moiety, the regeneration of Rh(III) occurred easily by O—N bond cleavage. From the olefination intermediate, the final product was formed by an intramolecular nucleophilic substitution reaction, in which the Cp*Rh(III) could be a catalyst. The experimental outcomes are well understood by the density functional theory (DFT)-suggested catalytic cycle of Rh(III)/Rh(I)/Rh(III).

Cite this article

Man Xu , Yuanzhi Xia . Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3272 -3278 . DOI: 10.6023/cjoc202103054

References

[1]
(a) Geepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. Chem. Rev. 2019, 119, 2192.
[1]
(b) Xue, X.-S.; Ji, P.; Zhou, B.; Cheng, J.-P. Chem. Rev. 2017, 117, 8622.
[1]
(c) Davies, D. L.; Macgregor, S. A.; McMullin, C. L. Chem. Rev. 2017, 117, 8649.
[2]
(a) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
[2]
(b) Wang, R.; Xie, X.; Liu, H.; Zhou, Y. Catalysts 2019, 9, 823.
[2]
(c) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
[2]
(d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
[3]
(a) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
[3]
(b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155.
[3]
(c) Huang, H.; Cai, J.; Deng, G.-J. Org. Biomol. Chem. 2016, 14, 1519.
[3]
(d) Mo, J.; Wang, L.; Liu, Y.; Cui, X. Synthesis 2015, 47, 439.
[3]
(e) Hu, Z.; Tong, X.; Liu, G. Chin. J. Org. Chem. 2015, 35, 539. (in Chinese)
[3]
(胡志勇, 童晓峰, 刘桂霞, 有机化学, 2015, 35, 539.)
[4]
(a) Patureau, F. W.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1977.
[4]
(b) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[4]
(c) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449.
[4]
(d) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Synlett 2011, 2789.
[5]
(a) Pan, J.-L.; Liu, C.; Chen, C.; Liu, T.-Q.; Wang, M.; Sun, Z.; Zhang, S.-Y. Org. Lett. 2019, 21, 2823.
[5]
(b) Wang, S.-B.; Zheng, J.; You, S.-L. Org. Lett. 2018, 20, 7131.
[5]
(c) Pan, J.-L.; Xie, P.; Chen, C.; Hao, Y.; Liu, C.; Bai, H.-Y.; Ding, J.; Wang, L.-R.; Xia, Y.; Zhang, S.-Y. Org. Lett. 2018, 20, 7131.
[5]
(d) Li, X. G.; Liu, K.; Zou, G.; Liu, P. N. Adv. Synth. Catal. 2014, 356, 1496.
[5]
(e) Huang, X.; Huang, J.; Du, C.; Zhang, X.; Song, F.; You, J. Angew. Chem.,Int. Ed. 2013, 52, 12970.
[5]
(f) Zheng, L.; Hua, R. Chem.-Eur. J. 2014, 20, 2352.
[5]
(g) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688.
[5]
(h) Krieger, J.-P.; Lesuisse, D.; Ricci, G.; Perrin, M.-A.; Meyer, C.; Cossy, J. Org. Lett. 2017, 19, 2706.
[5]
(i) Hu, Z.; Tong, X.; Liu, G. Org. Lett. 2016, 18, 1702.
[5]
(j) Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T. Chem. Sci. 2017, 8, 1015.
[5]
(k) Wu, S.; Zeng, R.; Fu, C.; Yu, Y.; Zhang, X.; Ma, S. Chem. Sci. 2015, 6, 2275.
[5]
(l) Wang, Y.; Chen, Y.; Yang, Y.; Zhou, B. Org. Chem. Front. 2018, 5, 1844.
[5]
(m) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am. Chem. Soc. 2009, 131, 13888.
[6]
(a) Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 16625.
[6]
(b) Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 16625.
[6]
(c) Muralirajan, K.; Haridharan, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2015, 357, 761.
[7]
(a) Mo, J.; Wang, L.; Cui, X. Org. Lett. 2015, 17, 4960.
[7]
(b) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623.
[7]
(c) Wang, P.; Xu, Y.; Sun, J.; Li, X. Org. Lett. 2019, 21, 8459.
[7]
(d) Wang, Q.; Li, Y.; Qi, Z.; Xie, F.; Lan, Y.; Li, X. ACS Catal. 2016, 6, 1971.
[8]
(a) Liu, S.; Pu, M.; Wu, Y.-D.; Zhang, X. J. Org. Chem. 2020, 85, 12594.
[8]
(b) Hu, W.; Li, J.; Xu, Y.; Li, J.; Wu, W.; Liu, H.; Jiang, H. Org. Lett. 2017, 19, 678.
[8]
(c) Zhu, Z.; Tang, X.; Li, X.; Wu, W.; Deng, G.; Jiang, H. J. Org. Chem. 2016, 81, 1401.
[8]
(d) Li, X.-C.; Du, C.; Zhang, H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2019, 21, 2863.
[8]
(e) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Chenga, C.-H. Adv. Synth. Catal. 2016, 358, 774.
[8]
(f) Zhu, C.; Zhu, R.; Zeng, H.; Chen, F.; Liu, C.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2017, 56, 13324.
[8]
(g) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem.-Eur. J. 2016, 22, 5899.
[8]
(h) Sen, M.; Mandal, R.; Das, A.; Kalsi, D.; Sundararaju, B. Chem.- Eur. J. 2017, 23, 17454.
[8]
(i) Zhou, S.; Wang, J.; Chen, P.; Chen, K.; Zhu, J. Chem.-Eur. J. 2016, 22, 14508.
[8]
(j) Yu, X.; Chen, K.; Guo, S.; Shi, P.; Song, C. Zhu, J. Org. Lett. 2017, 19, 5348.
[8]
(k) Jiang, X.; Hao, J.; Zhou, G.; Hou, C.; Hu, F. Chin. J. Org. Chem. 2019, 39, 1811.
[8]
(l) Wang, Z.; Xie, P.; Xia, Y. Chin. Chem. Lett. 2018, 29, 47.
[8]
(m) Muniraj, N.; Prabhu, K. R. Org. Lett. 2019, 21, 1068.
[8]
(n) Yu, C.; Li, F.; Zhang, J.; Zhong, G. Chem. Commun. 2017, 53, 533.
[8]
(o) Kaishap, P. P.; Sarmab, B.; Gogoi, S. Chem. Commun. 2016, 52, 9809.
[8]
(p) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999.
[8]
(q) Petrova, E.; Rasina, D.; Jirgensons, A. Eur. J. Org. Chem. 2017, 2017, 1773.
[9]
(a) Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem. 2012, 77, 3017.
[9]
(b) Guo, W.; Zhou, T.; Xia, Y. Organometallics 2015, 34, 3012.
[9]
(c) Zhou, T.; Guo, W.; Xia, Y. Chem.-Eur. J. 2015, 21, 9209.
[10]
Va?squez-Ce?spedes, S.; Wang, X.; Glorius, F. ACS Catal. 2018, 8, 242.
[11]
(a) Liu, S.; Qi, X.; Qu, L.-B.; Bai, R.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
[11]
(b) Li, Y.; Chen, H.; Qu, L.-B.; Houk, K. N.; Lan, Y. ACS Catal. 2019, 9, 7154.
[11]
(c) Funes-Ardoiz, I.; Maseras, F. ACS Catal. 2018, 8, 1161.
[11]
(d) Wu, W.; Ren, D.; Xu, B.; Ma, X.; Huang, C.; Zhang, J.; Liu, T. Asian J. Org. Chem. 2017, 6, 1885.
[11]
(e) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. J. Am. Chem. Soc. 2017, 139, 3537.
[11]
(f) Xing, Y.-Y.; Liu, J.-B.; Sheng, X.-H.; Sun, C.-Z.; Huang, F.; Chen, D.-Z. Inorg. Chem. 2017, 56, 5392.
[11]
(g) Xing, Z.; Huang, F.; Sun, C.; Zhao, X.; Liu, J.; Chen, D. Inorg. Chem. 2015, 54, 3958.
[11]
(h) Zhang, T.; Qi, X.; Liu, S.; Bai, R.; Liu, C.; Lan, Y. Chem.-Eur. J. 2017, 23, 2690.
[11]
(i) Du, L.; Xu, Y.; Yang, S.; Li, J.; Fu, X. J. Org. Chem. 2016, 81, 1921.
[12]
(a) Wang, X.; Gensch, T.; Lerchen, A.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 6506.
[12]
(b) Yang, Y.-F.; Houk, K. N.; Wu, Y.-D. J. Am. Chem. Soc. 2016, 138, 6861.
[12]
(c) Wu, Y.; Chen, Z.; Yang, Y.; Zhu, W.; Zhou, B. J. Am. Chem. Soc. 2018, 140, 42.
[12]
(d) Qiu, Z.; Deng, J.; Zhang, Z.; Wu, C.; Li, J.; Liao, X. Dalton Trans. 2016, 45, 8118.
[13]
(a) Ling, B.; Liu, Y.; Jiang, Y.-Y.; Liu, P.; Bi, S. Organometallics 2019, 38, 1877.
[13]
(b) Lau, S.; Ward, B.; Zhou, X.; White, A. J. P.; Casely, I. J.; Macgregor, S. A.; Crimmin, M. R. Organometallics 2017, 36, 3654.
[13]
(c) Song, L.; Zhang, X.; Tang, X.; Meervelt, L. V.; Eycken, J. V. D.; Harvey, J. N.; Eycken, E. V. V. D. Chem. Sci. 2020, 11, 11562.
[13]
(d) Ling, B.; Wang, J.; Liu, Y.; Jiang, Y.-Y.; Liu, P.; Feng, J.; Bi, S. Eur. J. Org. Chem. 2021, 2021, 266.
[13]
(e) Lian, B.; Zhang, L.; Fang, D.-C. Org. Chem. Front. 2019, 6, 2600.
[13]
(f) Rogge, T.; Ackermann, L. Angew. Chem., Int. Ed. 2019, 58, 15640.
[14]
(a) Li, S.; Shi, P.; Liu, R.-H.; Hu, X.-H.; Loh, T.-P. Org. Lett. 2019, 21, 1602.
[14]
(b) Xing, Y.-Y.; Liu, J.-B.; Sun, C.-Z.; Huang, F.; Chen, D.-Z. Inorg. Chem. 2018, 57, 10726.
[15]
(a) Liu, S.; Pu, M.; Wu, Y.-D.; Zhang, X. J. Org. Chem. 2020, 85, 12594.
[15]
(b) Zhang, M.; Liang, J.; Huang, G. J. Org. Chem. 2019, 84, 2372.
[15]
(c) Zhu, L.; Qi, X.; Li, Y.; Duan, M.; Zou, L.; Bai, R.; Lan, Y. Organometallics 2017, 36, 2107.
[15]
(d) Erbing, E.; Sanz-Marco, A.; Va?zquez-Romero, A.; Malmberg, J.; Johansson, M. J.; Go?mez-Bengoa, E.; Martín-Matute, B. ACS Catal. 2018, 8, 920.
[15]
(e) Gao, P.; Guo, W.; Xue, J.; Zhao, Y.; Yuan, Y.; Xia, Y.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 12231.
[15]
(f) Park, Y.; Heo, J.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020.
[16]
Zhou, Z.; Bian, M.; Zhao, L.; Gao, H.; Huang, J.; Liu, X.; Yu, X.; Li, X.; Yi, W. Org. Lett. 2018, 20, 3892.
[17]
Wu, H.; Li, X.; Tang, X.; Feng, C.; Huang, G. J. Org. Chem. 2018, 83, 9220.
[18]
(a) Chen, W.-J.; Lin, Z. Organometallics 2015, 34, 309.
[18]
(b) Guo, W.; Xia, Y. J. Org. Chem. 2015, 80, 8113.
[18]
(c) Chen, J.; Guo, W.; Xia, Y. J. Org. Chem. 2016, 81, 2635.
[19]
(a) Jiang, Y.-Y.; Man, X.; Bi, S. Sci. China: Chem. 2016, 59, 1448.
[19]
(b) Liu, L. L.; Wu, Y.; Wang, T.; Gao, X.; Zhu, J.; Zhao, Y. J. Org. Chem. 2014, 79, 5074.
[20]
(a) Ma, X.-X.; Liu, J.-B.; Huang, F.; Sun, C.-Z.; Chen, D.-Z. Catal. Sci. Technol. 2018, 8, 3590.
[20]
(b) Ramesh, B.; Tamizmani, M.; Jeganmohan, M. J. Org. Chem. 2019, 84, 4058.
[20]
(c) Wu, W.; Liu, Y.; Bi, S. Org. Biomol. Chem. 2015, 13, 8251.
[20]
(d) Wu, S.; Huang, X.; Wu, W.; Li, P.; Fu, C.; Ma, S. Nat. Commun. 2015, 6, 7946.
[20]
(e) Neufeldt, S. R.; Jime?nez-Ose?s, G.; Huckins, J. R.; Thiel, O. R.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 9843.
[21]
The reaction between 1a and 2a was preliminarily studied by the DFT method by Yi et al. (Ref. [16]), however, a high energy conformation was applied in the olefin insertion and following steps, and the β-elimination pathway was not considered from the olefin insertion intermediate. The reported energies in literature are not consistent with the experimental results.
[22]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, Jr. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
[23]
(a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[23]
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
[24]
(a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
[24]
(b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
[24]
(c) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
[25]
(a) Cruz, V. L.; Mun?oz-Escalona, A.; Martinez-Salazar, J. Polymer 1996, 37, 1663.
[25]
(b) Ehlers, A. W.; Bo?hme, M.; Dapprich, S.; Gobbi, A.; Ho?llwarth, A.; Jonas, V.; Ko?hler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
[25]
(c) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029.
[26]
Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
[27]
(a) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
[27]
(b) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.
[28]
Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
Outlines

/