ARTICLES

Synthesis of 4(3H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides

  • Xinchang Li ,
  • Huiru Yang ,
  • Zheyao Hu ,
  • Xin Jin ,
  • Wenyi Zhang ,
  • Xunxiang Guo
Expand
  • a Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240
    b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
    c Tongren Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200336
    d Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai 200240
*Corresponding author.E-mail:

Received date: 2021-04-21

  Revised date: 2021-04-30

  Online published: 2021-05-08

Supported by

Science and Technology Commission of Shanghai Municipality(18JC1410801); Medical Engineering Cross Fund of Shanghai Jiao Tong University(YG2019QNA38)

Abstract

An environmental benign protocol of visible-light-induced reaction has been developed. The methodology allows effective synthesis of 4(3H)-quinazolinones from 2-benzylaminobenzamides in simple and mild reaction conditions. Just irradiation with a blue LED light at room temperature, the reaction proceeds well to provide the corresponding quinazolinones in good to high yields under metal-free, photocatalyst-free and mediator-free conditions. This protocol is demonstrated by its wide substrate scope, good functional group tolerance, operationally simple, and gram-scale reaction. Mechanism studies suggest that a radical pathway might be involved in current reaction.

Cite this article

Xinchang Li , Huiru Yang , Zheyao Hu , Xin Jin , Wenyi Zhang , Xunxiang Guo . Synthesis of 4(3H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3083 -3088 . DOI: 10.6023/cjoc202104047

References

[1]
(a) Cao, S.-L.; Feng, Y.-P.; Jiang, Y.-Y.; Liu, S.-Y.; Ding, G.-Y.; Li, R.-T. Bioorg. Med. Chem. Lett. 2005, 15, 1915.
[1]
(b) Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43, 846.
[2]
Alagarsamy, V.; Pathak, U. S. Bioorg. Med. Chem. 2007, 15, 3457.
[3]
(a) Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. J. Med. Chem. 1996, 39, 5176.
[3]
(b) Alagarsamy, V.; Solomon, V. R.; Dhanabal, K. Bioorg. Med. Chem. 2007, 15, 235.
[4]
(a) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.-S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3136.
[4]
(b) Kikuchi, H.; Yamamoto, K.; Horoiwa, S.; Hirai, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. J. Med. Chem. 2006, 49, 4698.
[5]
(a) Yen, M. H.; Sheu, J. R.; Peng, I. H.; Lee, Y. M.; Chern, J. W. J. Pharm. Pharmacol. 1996, 48, 90.
[5]
(b) Padia, J. K.; Field, M.; Hinton, J.; Meecham, K.; Pablo, J.; Pinnock, R.; Roth, B. D.; Singh, L.; Suman-Chauhan, N.; Trivedi, B. K.; Webdale, L. J. Med. Chem. 1998, 41, 1042.
[6]
(a) Liverton, N. J.; Armstrong, D. J.; Claremon, D. A.; Remy, D. C.; Baldwin, J. J.; Lynch, R. J.; Zhang, G.; Gould, R. J. Bioorg. Med. Chem. Lett. 1998, 8, 483.
[6]
(b) Liu, J.-F.; Wilson, C. J.; Ye, P.; Sprague, K.; Sargent, K.; Si, Y.; Beletsky, G.; Yohannes, D.; Ng, S.-C. Bioorg. Med. Chem. Lett. 2006, 16, 686.
[6]
(c) Li, J. J.; Nahra, J.; Johnson, A. R.; Bunker, A.; O’Brien, P.; Yue, W.-S.; Ortwine, D. F.; Man, C.-F.; Baragi, V.; Kilgore, K.; Dyer, R. D.; Han, H.-K. J. Med. Chem. 2008, 51, 835.
[7]
For a selected review, see: Demeunynck, M.; Baussanne, I. Curr. Med. Chem. 2013, 20, 794.
[8]
(a) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274.
[8]
(b) Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.
[9]
Jang, Y.; Lee, S. B.; Hong, J.; Chun, S.; Lee, J.; Hong, S. Org. Biomol. Chem. 2020, 18, 5435.
[10]
(a) Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471.
[10]
(b) Laha, J. K.; Tummalapalli, K. S. S.; Nair, A.; Patel, N. J. Org. Chem. 2015, 80, 11351.
[10]
(c) Wang, Z.-Z.; Tang, Y. Tetrahedron 2016, 72, 1330.
[10]
(d) Zhang, F.; Hou, H.; Xu, X.; Chen, Z.; Ke, F. Chin. J. Org. Chem. 2021, 41, 833. (in Chinese)
[10]
(张帆, 侯慧青, 许秀枝, 陈志涛, 柯方, 有机化学, 2021, 41, 833.)
[11]
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[11]
(b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687.
[11]
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[11]
(d) Fabry, D. C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969.
[11]
(e) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
[11]
(f) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532.
[11]
(g) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[12]
Xu, J.; Liu, N.; Lv, H.; He, C.; Liu, Z.; Shen, X.; Cheng, F.; Fan, B. Green Chem. 2020, 22, 2739.
[13]
Wang, L.-X.; Hu, B.-Q.; Xiang, J.-F.; Cui, J.; Hao, X.; Liang, T.-L.; Tang, Y.-L. Tetrahedron 2014, 70, 8588.
[14]
Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274.
[15]
Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandaõ, P.; Paul, N. D. J. Org. Chem. 2019, 84, 10160.
[16]
Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2019, 84, 5129.
[17]
Rostami, A.; Pourshiani, O.; Navasi, Y.; Darvishi, N.; Saadati, S. New J. Chem. 2017, 41, 9033.
[18]
Ram, S.; Chauhan, A. S.; Sharma, A. K.; Das, P. Chem.-Eur. J. 2019, 25, 14506.
[19]
Jiang, X.; Tang, T.; Wang, J.-M.; Chen, Z.; Zhu, Y.-M. Ji, S.-J. J. Org. Chem. 2014, 79, 5082.
[20]
Bakavoli, M.; Shiri, A.; Ebrahimpour, Z.; Rahimizadeh, M. Chin. Chem. Lett. 2008, 19, 1403.
[21]
Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450.
[22]
Li, F.; Lu, L.; Ma, J. Org. Chem. Front. 2015, 2, 1589.
[23]
Hao, S.; Yang, J.; Liu, P.; Xu, J.; Yang, C.; Li, F. Org. Lett. 2021, 23, 2553.
Outlines

/