Chinese Journal of Organic Chemistry >
Synthesis of 4(3H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides
Received date: 2021-04-21
Revised date: 2021-04-30
Online published: 2021-05-08
Supported by
Science and Technology Commission of Shanghai Municipality(18JC1410801); Medical Engineering Cross Fund of Shanghai Jiao Tong University(YG2019QNA38)
An environmental benign protocol of visible-light-induced reaction has been developed. The methodology allows effective synthesis of 4(3H)-quinazolinones from 2-benzylaminobenzamides in simple and mild reaction conditions. Just irradiation with a blue LED light at room temperature, the reaction proceeds well to provide the corresponding quinazolinones in good to high yields under metal-free, photocatalyst-free and mediator-free conditions. This protocol is demonstrated by its wide substrate scope, good functional group tolerance, operationally simple, and gram-scale reaction. Mechanism studies suggest that a radical pathway might be involved in current reaction.
Key words: visible-light; 2-benzylaminobenzamides; 4(3H)-quinazolinones
Xinchang Li , Huiru Yang , Zheyao Hu , Xin Jin , Wenyi Zhang , Xunxiang Guo . Synthesis of 4(3H)-Quinazolinones by Visible-Light-Induced 2-Benzylaminobenzamides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3083 -3088 . DOI: 10.6023/cjoc202104047
[1] | (a) Cao, S.-L.; Feng, Y.-P.; Jiang, Y.-Y.; Liu, S.-Y.; Ding, G.-Y.; Li, R.-T. Bioorg. Med. Chem. Lett. 2005, 15, 1915. |
[1] | (b) Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Eur. J. Med. Chem. 2008, 43, 846. |
[2] | Alagarsamy, V.; Pathak, U. S. Bioorg. Med. Chem. 2007, 15, 3457. |
[3] | (a) Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. J. Med. Chem. 1996, 39, 5176. |
[3] | (b) Alagarsamy, V.; Solomon, V. R.; Dhanabal, K. Bioorg. Med. Chem. 2007, 15, 235. |
[4] | (a) Takaya, Y.; Tasaka, H.; Chiba, T.; Uwai, K.; Tanitsu, M.; Kim, H.-S.; Wataya, Y.; Miura, M.; Takeshita, M.; Oshima, Y. J. Med. Chem. 1999, 42, 3136. |
[4] | (b) Kikuchi, H.; Yamamoto, K.; Horoiwa, S.; Hirai, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. J. Med. Chem. 2006, 49, 4698. |
[5] | (a) Yen, M. H.; Sheu, J. R.; Peng, I. H.; Lee, Y. M.; Chern, J. W. J. Pharm. Pharmacol. 1996, 48, 90. |
[5] | (b) Padia, J. K.; Field, M.; Hinton, J.; Meecham, K.; Pablo, J.; Pinnock, R.; Roth, B. D.; Singh, L.; Suman-Chauhan, N.; Trivedi, B. K.; Webdale, L. J. Med. Chem. 1998, 41, 1042. |
[6] | (a) Liverton, N. J.; Armstrong, D. J.; Claremon, D. A.; Remy, D. C.; Baldwin, J. J.; Lynch, R. J.; Zhang, G.; Gould, R. J. Bioorg. Med. Chem. Lett. 1998, 8, 483. |
[6] | (b) Liu, J.-F.; Wilson, C. J.; Ye, P.; Sprague, K.; Sargent, K.; Si, Y.; Beletsky, G.; Yohannes, D.; Ng, S.-C. Bioorg. Med. Chem. Lett. 2006, 16, 686. |
[6] | (c) Li, J. J.; Nahra, J.; Johnson, A. R.; Bunker, A.; O’Brien, P.; Yue, W.-S.; Ortwine, D. F.; Man, C.-F.; Baragi, V.; Kilgore, K.; Dyer, R. D.; Han, H.-K. J. Med. Chem. 2008, 51, 835. |
[7] | For a selected review, see: Demeunynck, M.; Baussanne, I. Curr. Med. Chem. 2013, 20, 794. |
[8] | (a) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274. |
[8] | (b) Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046. |
[9] | Jang, Y.; Lee, S. B.; Hong, J.; Chun, S.; Lee, J.; Hong, S. Org. Biomol. Chem. 2020, 18, 5435. |
[10] | (a) Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471. |
[10] | (b) Laha, J. K.; Tummalapalli, K. S. S.; Nair, A.; Patel, N. J. Org. Chem. 2015, 80, 11351. |
[10] | (c) Wang, Z.-Z.; Tang, Y. Tetrahedron 2016, 72, 1330. |
[10] | (d) Zhang, F.; Hou, H.; Xu, X.; Chen, Z.; Ke, F. Chin. J. Org. Chem. 2021, 41, 833. (in Chinese) |
[10] | (张帆, 侯慧青, 许秀枝, 陈志涛, 柯方, 有机化学, 2021, 41, 833.) |
[11] | (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. |
[11] | (b) Shi, L.; Xia, W. Chem. Soc. Rev. 2012, 41, 7687. |
[11] | (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. |
[11] | (d) Fabry, D. C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969. |
[11] | (e) Xie, J.; Jin, H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193. |
[11] | (f) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Chem. Rev. 2018, 118, 7532. |
[11] | (g) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506. |
[12] | Xu, J.; Liu, N.; Lv, H.; He, C.; Liu, Z.; Shen, X.; Cheng, F.; Fan, B. Green Chem. 2020, 22, 2739. |
[13] | Wang, L.-X.; Hu, B.-Q.; Xiang, J.-F.; Cui, J.; Hao, X.; Liang, T.-L.; Tang, Y.-L. Tetrahedron 2014, 70, 8588. |
[14] | Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274. |
[15] | Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandaõ, P.; Paul, N. D. J. Org. Chem. 2019, 84, 10160. |
[16] | Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2019, 84, 5129. |
[17] | Rostami, A.; Pourshiani, O.; Navasi, Y.; Darvishi, N.; Saadati, S. New J. Chem. 2017, 41, 9033. |
[18] | Ram, S.; Chauhan, A. S.; Sharma, A. K.; Das, P. Chem.-Eur. J. 2019, 25, 14506. |
[19] | Jiang, X.; Tang, T.; Wang, J.-M.; Chen, Z.; Zhu, Y.-M. Ji, S.-J. J. Org. Chem. 2014, 79, 5082. |
[20] | Bakavoli, M.; Shiri, A.; Ebrahimpour, Z.; Rahimizadeh, M. Chin. Chem. Lett. 2008, 19, 1403. |
[21] | Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450. |
[22] | Li, F.; Lu, L.; Ma, J. Org. Chem. Front. 2015, 2, 1589. |
[23] | Hao, S.; Yang, J.; Liu, P.; Xu, J.; Yang, C.; Li, F. Org. Lett. 2021, 23, 2553. |
/
〈 |
|
〉 |