REVIEWS

Advances on the Synthesis of Natural Products with Dihydrobenzofuran Skeleton via Oxidative [3+2] Cycloadditions

  • Jun Zhao ,
  • Jian Xiao ,
  • Yawen Wang ,
  • Yu Peng
Expand
  • a Engineering Research Center of Biomimetic Synthesis of Natural Drugs of Sichuan Province, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031
    b School of Chemistry and Environment Science, Yili Normal University, Yining, Xinjiang 835000
*Corresponding authors.E-mail: ;

Received date: 2021-03-26

  Revised date: 2021-04-21

  Online published: 2021-05-14

Supported by

National Natural Science Foundation of China(21772078); National Natural Science Foundation of China(22071200); Science and Technology Department of Sichuan Province(2020JDRC0021); Fundamental Research Funds for the Central Universities(2682020CX55)

Abstract

Dihydrobenzofuran structure units widely exist in a variety of natural products, such as alkaloids and terpenes. The total synthesis of natural products containing dihydrobenzofuran skeleton has thus emerged in recent years, because of their good biological activities and medicinal value. The application progress of oxidative [3+2] cycloaddition in the construction of dihydrobenzofuran ring skeleton and the total synthesis of various natural products in recent ten years was reviewed.

Cite this article

Jun Zhao , Jian Xiao , Yawen Wang , Yu Peng . Advances on the Synthesis of Natural Products with Dihydrobenzofuran Skeleton via Oxidative [3+2] Cycloadditions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 2933 -2945 . DOI: 10.6023/cjoc202103048

References

[1]
Zhang, H.; Qiu, S.; Tamez, P.; Tan, G. T.; Aydogmus, Z.; Hung, N. V.; Cuong, N. M.; Angerhofer, C.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. Pharm. Biol. 2002, 40, 221.
[2]
Wu, Q. X.; Crews, M. S.; Draskovic, M.; Sohn, J.; Johnson, T. A.; Tenney, K.; Valeriote, F. A.; Yao, X. J.; Bjeldanes, L. F.; Crews, P. Org. Lett. 2010, 12, 4458.
[3]
(a) Liu, H.-X.; Chen, K.; Liu, Y.; Liu, C.; Wu, J.-W.; Xu, Z.-F.; Tan, H.-B.; Qiu, S.-X. Fitoterapia 2016, 115, 142.
[3]
(b) Cao, J.-Q.; Tian, H.-Y.; Li, M.-M.; Zhang, W.; Wang, Y.; Wang, L.; Ye, W.-C. J. Nat. Prod. 2018, 81, 57.
[3]
(c) Wu, L.; Zhang, Y.-L.; Wang, X.-B.; Zhang, Y.-M.; Yang, M.-H.; Luo, J.; Kong, L.-Y. Tetrahedron 2017, 73, 1105.
[4]
Laurita, T.; D’Orsi, R.; Chiummiento, L.; Funicello, M.; Lupattelli, P. Synthesis 2020, 52, 1451.
[5]
Cui, N.; Zhao, Y.; Wang, Y. Chin. J. Org. Chem. 2017, 37, 20. (in Chinese)
[5]
(崔娜, 赵宇, 王云侠, 有机化学, 2017, 37, 20.)
[6]
Dohi, T.; Toyoda, Y.; Nakae, T.; Koseki, D.; Kubo, H.; Kamitanaka, T.; Kita, Y. Heterocycles 2015, 90, 631.
[7]
Chen, Z.; Pitchakuntla, M.; Jia, Y. Nat. Prod. Rep. 2019, 36, 666.
[8]
(a) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303.
[8]
(b) Burgett, A. W. G.; Li, Q. Y.; Wei, Q.; Harran, P. G. Angew. Chem., Int. Ed. 2003, 42, 4961.
[9]
Zhao, J.-C.; Yu, S.-M.; Liu, Y.; Yao, Z.-J. Org. Lett. 2013, 15, 4300.
[10]
(a) Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Edgar, J. A.; Flower, K.; Gardner, D.; Willing, R. I. Phytochemistry 1999, 51, 153.
[10]
(b) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881.
[11]
Li, L.; Yuan, K.; Jia, Q.; Jia, Y. Angew. Chem., Int. Ed. 2019, 58, 6074.
[12]
(a) Rogers, E. F.; Snyder, H. R.; Fischer, R. F. J. Am. Chem. Soc. 1952, 74, 1987.
[12]
(b) Nicolaou, K. C.; Dalby, S. M.; Li, S.; Suzuki, T.; Chen, D. Y.-K. Angew. Chem., Int. Ed. 2009, 48, 7616.
[13]
Sun, D.; Zhao, Q.; Li, C. Org. Lett. 2011, 13, 5302.
[14]
Liang, K.; Yang, J.; Tong, X.; Shang, W.; Pan, Z.; Xia, C. Org. Lett. 2016, 18, 1474.
[15]
(a) Sato, H.; Kawagishi, H.; Nishimura, T.; Yoneyama, S.; Yoshimoto, Y.; Sakamura, S.; Furusaki, A.; Katsuragi, S.; Matsumoto, T. Agric. Biol. Chem. 1985, 49, 2969.
[15]
(b) Liang, K.; Wu, T.; Xia, C. Org. Biomol. Chem. 2016, 14, 4690.
[16]
(a) Sakoulas, G.; Nam, S.-J.; Loesgen, S.; Fenical, W.; Jensen, P. R.; Nizet, V.; Hensler, M. PLoS One 2012, 7, e29439.
[16]
(b) Meier, R.; Strych, S.; Trauner, D. Org. Lett. 2014, 16, 2634.
[17]
(a) Yuan, Y. F.; Feng, Y.; Ren, F. X.; Niu, S. B.; Liu, X. Z.; Che, Y. S. Org. Lett. 2013, 15, 6050.
[17]
(b) Qiao, C.; Zhang, W.; Han, J.-C.; Li, C.-C. Org. Lett. 2016, 18, 4932.
[18]
Guo, Y.; Zhang, Y.; Xiao, M.; Xie, Z. Org. Lett. 2018, 20, 2509.
[19]
Dethe, D. H.; Nirpal, A. K. Org. Biomol. Chem. 2019, 17, 7507.
[20]
(a) Langcake, P.; Pryce, R. J. Experientia 1977, 33, 151.
[20]
(b) Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. J. Org. Chem. 2004, 69, 2598.
[21]
(a) Hada, S.; Hattori, M.; Tezuka, Y.; Kikuchi, T.; Namba, T. Phytochemistry 1988, 27, 563.
[21]
(b) Hattori, M.; Yang, X.-W.; Shu, Y.-Z.; Kakiuchi, N.; Tezuka, Y.; Kikuchi, T.; Namba, T. Chem. Pharm. Bull. 1988, 36, 648.
[21]
(c) Juhász, L.; Kürti, L.; Antus, S. J. Nat. Prod. 2000, 63, 866.
[22]
(a) Doskotch, R. W.; Flom, M. S. Tetrahedron 1972, 28, 4711.
[22]
(b) Chen, P.-Y.; Wu, Y.-H.; Hsu, M.-H.; Wang, T.-P.; Wang, E.-C. Tetrahedron, 2013, 69, 653.
[23]
Blum, T. R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 11056.
[24]
Song, T.; Zhou, B.; Peng, G.-W.; Zhang, Q.-B.; Wu, L. Z.; Liu, Q.; Wang, Y. Chem.-Eur. J. 2014, 20, 678.
[25]
(a) Pieters, L.; De Bruyne, T.; Claeys, M.; Vlietinck, A. M.; Calommeand, M.; vanden Berghe, D. J. Nat. Prod. 1993, 56, 899.
[25]
(b) Zhao, Q.; Jin, J.-K.; Wang, J.; Zhang, F.-L.; Wang, Y.-F. Chem. Sci. 2020, 11, 3909.
[26]
Bruschi, M.; Orlandi, M.; Rindone, B.; Rummakko, P.; Zoia, L. J. Phys. Org. Chem. 2006, 19, 592.
[27]
Jing, Z.-R.; Liang, D.-D.; Tian, J.-M.; Zhang, F.-M.; Tu, Y.-Q. Org. Lett. 2021, 23, 1258.
[28]
Mohr, A. L.; Lombardo, V. M.; Arisco, T. M.; Morrow, G. W. Synth. Commun. 2009, 39, 3845.
[29]
Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.
Outlines

/