ARTICLES

Design and Synthesis of Alkyl Phenols Inhibitors of Death Associated Apoptotic Protein Kinase 2 (DRAK2)

  • Zheng Zhang ,
  • Chengqiu Dai ,
  • Honghong Wu ,
  • Jingya Li ,
  • Fajun Nan
Expand
  • a University of Chinese Academy of Sciences, Beijing 100049
    b Shanghai Institute of Materia Medica, Shanghai 201203
    c Hangzhou Institute for Advanced Study, Hangzhou 310024
*Corresponding authors.E-mail: ;

Received date: 2021-03-29

  Revised date: 2021-04-29

  Online published: 2021-05-14

Abstract

Death associated apoptotic protein kinase 2 (DRAK2) is a threonine/serine kinase and a member of the death- associated protein kinase (DAPK) family. Under the action of external stimuli, its overexpression has the ability to induce apoptosis. High glucose, high fat, and certain cellular inflammatory factors can induce the high expression of DRAK2, thereby causing pancreatic β-cell apoptosis. DRAK2 may play a mediating role in the process. Therefore, small molecule inhibitors targeting DRAK2 own good development prospects to treat diabetes. In this work, more than 20 active compounds were obtained through structural modification of the alkylphenols compound 8a, and the structure-activity relationship between them was preliminarily determined.

Cite this article

Zheng Zhang , Chengqiu Dai , Honghong Wu , Jingya Li , Fajun Nan . Design and Synthesis of Alkyl Phenols Inhibitors of Death Associated Apoptotic Protein Kinase 2 (DRAK2)[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3204 -3213 . DOI: 10.6023/cjoc202103056

References

[1]
Sanjo, H.; Kawai, T.; Akira, S. J. Biol. Chem. 1998, 273, 29066.
[2]
Deiss, L. P.; Feinstein, E.; Berissi, H.; Cohen, O.; Kimchi, A. Genes Dev. 1995, 9, 15.
[3]
Inbal, B.; Shani, G.; Cohen, O.; Kissil, J. L.; Kimchi, A. Mol. Cell. Biol. 2000, 20, 1044.
[4]
Kawai, T.; Matsumoto, M.; Takeda, K.; Sanjo, H.; Akira, S. Mol. Cell. Biol. 1998, 18, 1642.
[5]
Kawai, T.; Nomura, F.; Hoshino, K.; Copeland, N. G.; Gilbert, D. J.; Jenkins, N. A.; Akira, S. Oncogene 1999, 18, 3471.
[6]
Farag, A. K.; Roh, E. J. Med. Res. Rev. 2019, 39, 349.
[7]
Rhodes, C. J. Science 2005, 307, 380.
[8]
Wang, G.-Y; Wu, G.-T. J. Tongji Univ., Med. Sci. 2016, 37, 19. (in Chinese)
[8]
(王广宇, 吴国亭, 同济大学学报(医学版), 2016, 37, 19.)
[9]
Mao, J.-N.; Luo, H.-Y; Wu, J.-P. J. Cell. Biochem. 2008, 105, 1073.
[10]
Mao, J.-N; Luo, H.-Y; Han, B.; Bertrand, R.; Wu, J.-P. J. Immunol. 2009, 182, 4762.
[11]
Marvaldi, L.; Hausott, B.; Auer, M.; Leban, J.; Klimaschewski, L. Neurochem. Res. 2014, 39, 403.
[12]
Gao, L.-J; Kovackova, S.; Sala, M.; Ramadori, A. T.; De Jonghe, S.; Herdewijn, P. J. Med. Chem. 2014, 57, 7624.
[13]
Jung, M.-E.; Byun, B. J.; Kim, H. M.; Lee, J. Y.; Park, J. H.; Lee, N.; Son, Y. H.; Choi, S. U.; Yang, K.-M.; Kim, S. J.; Lee, K.; Kim, Y. C.; Choi, G. Bioorg. Med. Chem. Lett. 2016, 26, 2719.
[14]
Wang, S., Xu, L., Lu, Y.-T; Liu, Y.-F.; Han, B.; Liu, T.; Tang, J.; Li, J.; Wu, J. P.; Li, J. Y.; Yu, L. F.; Yang, F. Eur. J. Med. Chem. 2017, 130, 195.
[15]
Buerger, M.; Loch, M. N.; Jones, P. G.; Werz, D. B. Chem. Sci. 2020, 11, 1912.
[16]
Campbell, K. N.; Eby, L. T. J. Am. Chem. Soc. 1941, 63, 216.
[17]
Wu, L.-Q; Yang, C.-G. J. Shenyang Pharm. Univ. 2008, 25, 459. (in Chinese)
[17]
(武利强, 杨春广, 沈阳药科大学学报, 2008, 25, 459.)
[18]
Wilson, C. M.; Ganesh, V.; Noble, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2017, 56, 16318.
[19]
Snaddon, T. N.; Buchgraber, P.; Schulthoff, S.; Wirtz, C.; Mynott, R.; Fuerstner, A. Chem.-Eur. J. 2010, 16, 12133.
[20]
De, Feyter, S.; Abdel-Mottaleb, M. M. S.; Schuurmans, N.; Verkuijl, B. J. V.; Van, Esch, J. H.; Feringa, B. L.; De Schryver, F. C. Chem.- Eur. J. 2004, 10, 1124.
[21]
Perales, J. B.; Makino, N. F.; Van Vranken, D. L. J. Org. Chem. 2002, 67, 6711.
[22]
Song, S.; Li, X.-Y; Wei, J.-L; Wang, W.-J.; Zhang, Y.-Q.; Ai, L.-S.; Zhu, Y.-C.; Shi, X.-M.; Zhang, X.-H.; Jiao, N. Nat. Catal. 2020, 3, 107.
Outlines

/