ARTICLES

NaOtBu-Catalyzed Hydrophosphonylation of δ-CN-δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides

  • Donglin Wang ,
  • Linglong Kan ,
  • Yudao Ma ,
  • Lei Liu
Expand
  • a School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100
    b Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057
*Corresponding authors.E-mail: ;

Received date: 2021-04-01

  Revised date: 2021-04-29

  Online published: 2021-05-14

Supported by

National Natural Science Foundation of China(21971148); Shenzhen Special Funds(JCYJ20190807093805572)

Abstract

An effective method for the construction of diarylmethyl phosphorus oxides containing CN-substituted quaternary stereocenters via 1,6-conjugated addition has been developed. Under mild condition, the hydrophosphonylation process of δ-CN-δ-aryl-disubstituted para-quinone methides (p-QMs) with diarylphosphine oxides underwent smoothly, affording the desired products in 74%~92% yields. In addition, this protocol features great functional group tolerance and displays a broad substrate scope. Diaryl (multi-substituted methyl) phosphorus oxides bearing CN-substituted quaternary stereocenters synthesized by this efficient method has the potential application in the discovery of new ligands.

Cite this article

Donglin Wang , Linglong Kan , Yudao Ma , Lei Liu . NaOtBu-Catalyzed Hydrophosphonylation of δ-CN-δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3192 -3203 . DOI: 10.6023/cjoc202104003

References

[1]
(a) Bayne, J. M.; Stephan, D. W. Chem. Soc. Rev. 2016, 45, 765.
[1]
(b) Chen, X.; Kopecky, D. J.; Mihalic, J.; Jeffries, S.; Min, X.; Heath, J.; Deignan, J.; Lai, S.; Fu, Z.; Guimaraes, C.; Shen, S.; Li, S.; Johnstone, S.; Thibault, S.; Xu, H.; Cardozo, M.; Shen, W.; Walker, N.; Kayser, F.; Wang, Z. J. Med. Chem. 2012, 55, 3837.
[1]
(c) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
[1]
(d) Duffy, M. P.; Delaunay, W.; Bouit, P. A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.
[1]
(e) Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771.
[1]
(f) George, A.; Veis, A. Chem. Rev. 2008, 108, 4670.
[1]
(g) Montchamp, J.-L. Acc. Chem. Res. 2014, 47, 77.
[1]
(h) Nordheider, A.; Woollins, J. D.; Chivers, T. Chem. Rev. 2015, 115, 10378.
[1]
(i) Queffelec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B., Chem. Rev. 2012, 112, 3777.
[1]
(j) Zhao, D.; Wang, R. Chem. Soc. Rev. 2012, 41, 2095.
[1]
(k) Zhou, L.; Zhang, H.-W.; Tao, S.; Bassit, L.; Whitaker, T.; McBrayer, T. R.; Ehteshami, M.; Amiralaei, S.; Pradere, U.; Cho, J. H.; Amblard, F.; Bobeck, D.; Detorio, M.; Coats, S. J.; Schinazi, R. F. J. Med. Chem. 2015, 58, 3445.
[1]
(l) Li, N. S.; Frederiksen, J. K.; Piccirilli, J. A. Acc. Chem. Res. 2011, 44, 1257.
[1]
(m) Ohata, K.; Terashima, S. Tetrahedron 2009, 65, 2244.
[1]
(n) Wakefield, Z. T.; Allen, S. E.; Mccullough, J. F.; Sheridan, R. C.; Kohler, J. J. J. Agric. Food Chem. 1971, 19, 99.
[1]
(o) Baumgartner, T.; Reau, R. Chem. Rev. 2006, 106, 4681.
[1]
(p) Bock, T.; Moehwald, H.; Mulhaupt, R. Macromol. Chem. Phys. 2007, 208, 1324.
[1]
(q) Caminade, A. M.; Majoral, J. P., J. Mater. Chem. 2005, 15, 3643.
[1]
(r) Joly, D.; Tondelier, D.; Deborde, V.; Delaunay, W.; Thomas, A.; Bhanuprakash, K.; Geffroy, B.; Hissler, M.; Reau, R. Adv. Funct. Mater. 2012, 22, 567.
[1]
(s) Kim, D.; Salman, S.; Coropceanu, V.; Salomon, E.; Padmaperuma, A. B.; Sapochak, L. S.; Kahn, A.; Bredas, J. L. Chem. Mater. 2010, 22, 247.
[1]
(t) Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M. Chem. Soc. Rev. 2009, 38, 1430.
[1]
(u) Walawalkar, M. G.; Roesky, H. W.; Murugavel, R. Acc. Chem. Res. 1999, 32, 117.
[2]
(a) Grushin, V. V. Chem. Rev. 2004, 104, 1629.
[2]
(b) Luehr, S.; Holz, J.; Boerner, A. ChemCatChem 2011, 3, 1708.
[2]
(c) Tang, W. J.; Zhang, X. M. Chem. Rev. 2003, 103, 3029.
[2]
(d) Xia, H.; Yan, H.; Shen, C.; Shen, F.; Zhang, P. Catal. Commun. 2011, 16, 155.
[2]
(e) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2014, 72, 815. (in Chinese)
[2]
(于月娜, 徐明华, 化学学报, 2014, 72, 815.)
[2]
(f) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655. (in Chinese)
[2]
(于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[3]
(a) Hamels, D.; Dansette, P. M.; Hillard, E. A.; Top, S.; Vessieres, A.; Herson, P.; Jaouen, G.; Mansuy, D. Angew. Chem., Int. Ed. 2009, 48, 9124.
[3]
(b) Messiano, G. B.; da Silva, T.; Nascimento, I. R.; Lopes, L. M. X. Phytochemistry 2009, 70, 590.
[3]
(c) Wang, L.; Xie, Y.-B.; Huang, N.-Y.; Yan, J.-Y.; Hu, W.-M.; Liu, M.-G.; Ding, M.-W. ACS Catal. 2016, 6, 4010.
[3]
(d) Zhou, Q.; Qu, Y.; Mangrum, J. B.; Wang, X. Chem. Res. Toxicol. 2011, 24, 402.
[3]
(e) Leary, G. J. Wood Sci. Technol. 1980, 14, 21.
[4]
(a) Lam, K. H.; Gambari, R.; Yuen, C. W. M.; Kan, C. W.; Chan, P.; Xu, L.; Tang, W.; Chui, C. H.; Cheng, G. Y. M.; Wong, R. S. M.; Lau, F. Y.; Tong, C. S. W.; Chan, A. K. W.; Lai, P. B. S.; Kok, S. H. L.; Cheng, C. H.; Chan, A. S. C.; Tang, J. C. O. Bioorg. Med. Chem. Lett. 2009, 19, 2266.
[4]
(b) Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317.
[4]
(c) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792.
[4]
(d) Cao, Y.; Nagle, J. K.; Wolf, M. O.; Patrick, B. O. J. Am. Chem. Soc. 2015, 137, 4888.
[4]
(e) Thomas, B.; Régis, R. Chem. Rev. 2006, 106, 4681.
[4]
(f) Wu, Z.-G.; Liang, X.; Zhou, J.; Yu, L.; Wang, Y.; Zheng, Y.-X.; Li, Y.-F.; Zuo, J.-L.; Pan, Y. Chem. Commun. 2017, 53, 6637.
[4]
(g) Remond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai, H.; Juge, S. Org. Lett. 2013, 15, 1870.
[4]
(h) Sues, P. E.; Lough, A. J.; Morris, R. H. Inorg. Chem. 2012, 51, 9322.
[5]
(a) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
[5]
(b) Rajeshwaran, G. G.; Nandakumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270.
[6]
Pallikonda, G.; Chakravarty, M. Eur. J. Org. Chem. 2013, 2013, 944.
[7]
(a) Fujii, K.; Ito, S.; Mikami, K. J. Org. Chem. 2019, 84, 12281.
[7]
(b) Matsude, A.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3553.
[7]
(c) Montel, S.; Raffier, L.; He, Y.; Walsh, P. J. Org. Lett. 2014, 16, 1446.
[8]
(a) Errede, L. A.; Szwarc, M. Q. Rev. Chem. Soc. 1958, 12, 301.
[8]
(b) Li, W.; Xu, X.; Zhang, P.; Li, P. Chem.-Asian J. 2018, 13, 2350.
[8]
(c) Parra, A.; Tortosa, M. ChemCatChem 2015, 7, 1524.
[8]
(d) Richter, D.; Hampel, N.; Singer, T.; Ofial, A. R.; Mayr, H. Eur. J. Org. Chem. 2009, 2009, 3203.
[8]
(e) Itoh, T. Prog. Polym. Sci. 2001, 26, 1019.
[9]
(a) Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Mueller, R. Chem.-Eur. J. 2011, 17, 7739.
[9]
(b) Martin, H. J.; Magauer, T.; Mulzer, J. Angew. Chem., Int. Ed. 2010, 49, 5614.
[9]
(c) Peter, M. G. Angew. Chem., Int. Ed. 1989, 28, 555.
[9]
(d) Turner, A. B. Q. Rev. Chem. Soc. 1964, 18, 347.
[9]
(e) Takao, K.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.; Kawashima, A.; Shinonaga, H. Org. Lett. 2001, 3, 4291.
[10]
(a) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414.
[10]
(b) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370.
[10]
(c) Wu, Z.; Wang, J. Acta Chim. Sinica 2017, 75, 74. (in Chinese)
[10]
(吴自俊, 汪舰, 化学学报, 2017, 75, 74.)
[11]
(a) Wang, J.-Y.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2020, 7, 1743.
[11]
(b) Lima, C. G. S.; Pauli, F. P.; Costa, D. C. S.; de Souza, A. S.; Forezi, L. S. M.; Ferreira, V. F.; da Silva, F. d. S. Eur. J. Org. Chem. 2020, 2650.
[11]
(c) Wang, Z.; Zhu, Y.; Pan, X.; Wang, G.; Liu, L. Angew. Chem., Int. Ed. 2020, 59, 3053.
[11]
(d) Yuan, H.; Kowah, J. A. H.; Jiang, J. Tetrahedron Lett. 2020, 61.
[11]
(e) Nigst, T. A.; Ammer, J.; Mayr, H. Angew. Chem.,Int. Ed. 2012, 51, 1353.
[11]
(f) Shen, Y.; Qi, J.; Mao, Z.; Cui, S. Org. Lett. 2016, 18, 2722.
[11]
(g) Lopez, A.; Parra, A.; Jarava-Barrera, C.; Tortosa, M. Chem. Commun. 2015, 51, 17684.
[11]
(h) Dong, N.; Zhang, Z.-P.; Xue, X.-S.; Li, X.; Cheng, J.-P. Angew. Chem., Int. Ed. 2016, 55, 1460.
[11]
(i) Mao, Y.; Wang, Z.; Wang, G.; Zhao, R.; Kan, L.; Pan, X.; Liu, L. ACS Catal. 2020, 10, 7785.
[11]
(j) Pan, X.; Wang, Z.; Kan, L.; Mao, Y.; Zhu, Y.; Liu, L. Chem. Sci. 2020, 11, 2414.
[11]
(k) Lin, J.; Sun, W. Chin. J. Org. Chem. 2020, 40, 4367 (in Chinese)
[11]
(林进, 孙伟, 有机化学, 2020, 40, 4367.)
[11]
(l) Zuo, H.-D.; Hao, W.-J.; Zhu, C.-F.; Guo, C.; Tu, S.-J.; Jiang, B. Org. Lett. 2020, 22, 4471.
[11]
(m) Zuo, H.-D.; Ji, X.-S.; Guo, C.; Tu, S.-J.; Hao, W.-J.; Jiang, B. Org. Chem. Front. 2021, 8, 1496.
[12]
(a) Yang, B.; Yao, W.; Xia, X.-F.; Wang, D. Org. Biomol. Chem. 2018, 16, 4547.
[12]
(b) Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Xu, W.; Xu, W.-Y.; Yang, C.-A.; Tang, K.-W. Eur. J. Org. Chem. 2019, 3273.
[12]
(c) Zhang, B.; Liu, L.; Mao, S.; Zhou, M.-D.; Wang, H.; Li, L. Eur. J. Org. Chem. 2019, 3898.
[12]
(d) Aher, Y. N.; Pawar, A. B. Org. Biomol. Chem. 2019, 17, 7536.
[12]
(e) Yuan, H.; Kowah, J. A. H.; Jiang, J. Tetrahedron Lett. 2020, 61, 151748.
[12]
(f) Arde, P.; Anand, R. V. Org. Biomol. Chem. 2016, 14, 5550.
[12]
(g) Wang, L.; Yang, F.; Xu, X.; Jiang, J. Org. Chem. Front. 2021, 8, 2002.
[13]
(a) Qi, Y.; Zhang, F.; Wang, L.; Feng, A.; Zhu, R.; Sun, S.; Li, W.; Liu, L. Org. Biomol. Chem. 2020, 18, 3522.
[13]
(b) Wang, L.; Wang, N.; Qi, Y.; Sun, S.; Liu, X.; Li, W.; Liu, L. Chin. J. Org. Chem. 2020, 40, 3934. (in Chinese)
[13]
(王琳, 王楠, 齐越, 孙书涛, 刘希功, 李伟, 刘磊, 有机化学, 2020, 40, 3934.)
[14]
Itoh, T.; Nakanishi, E.; Okayama, M.; Kubo, M. Macromolecules 2000, 33, 269.
Outlines

/