NOTES

Ligand-Free Iron-Catalyzed Intramolecular Amination of C(sp3)—H Bond for the Synthesis of Imidazolinones

  • Linyang Wu ,
  • Dayou Zhong ,
  • Wenbo Liu
Expand
  • Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072
* Corresponding author. E-mail:

Received date: 2021-04-26

  Revised date: 2021-05-09

  Online published: 2021-05-14

Supported by

National Natural Science Foundation of China(21971198); National Natural Science Foundation of China(21772148)

Abstract

Transition-metal-nitrenoids intramolecular C—H insertion is one of the most effective methods to synthesize nitrogen-containing heterocycles. Using 2-azido-N,N-dibenzylacetamides as substrates, an iron-catalyzed intramolecular C(sp3)—H bond amination reaction under ligand-free and external oxidant-free conditions has been developed. A series of imidazolinones were synthesized in moderate to good yields.

Cite this article

Linyang Wu , Dayou Zhong , Wenbo Liu . Ligand-Free Iron-Catalyzed Intramolecular Amination of C(sp3)—H Bond for the Synthesis of Imidazolinones[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 4083 -4087 . DOI: 10.6023/cjoc202104054

References

[1]
Trowbridge, A.; Walton, S. M.; Gaunt, M. J. Chem. Rev. 2020, 120, 2613.
[2]
Hazelard, D.; Nocquet, P.; Compain, P. Org. Chem. Front. 2017, 4, 2500.
[3]
Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
[4]
Baumgartner, L. M.; Dennis, J. M.; White, N. A.; Buchwald, S. L.; Jensen, K. F. Org. Process Res. Dev. 2019, 23, 1594.
[5]
Dai, L. Prog. Chem. 2018, 30, 1257. (in Chinese)
[5]
(戴立信, 化学进展, 2018, 30, 1257.)
[6]
Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.
[7]
Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
[8]
Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222.
[9]
Plietker, B.; Röske, A. Catal. Sci. Technol. 2019, 9, 4188.
[10]
Liu, Y.; You, T.; Wang, H. X.; Tang, Z.; Zhou, C. Y.; Che, C.-M. Chem. Soc. Rev. 2020, 49, 5310.
[11]
Shi, D.; Bao, H.; Xu, Z.; Liu, Y. Chin. J. Org. Chem. 2017, 37, 1290. (in Chinese)
[11]
(施冬冬, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 1290.)
[12]
Xu, L.; Xu, H.; Lin, H.; Dai, H. Chin. J. Org. Chem. 2018, 38, 1940. (in Chinese)
[12]
(徐琳琳, 徐辉, 林海霞, 戴辉雄, 有机化学, 2018, 38, 1940.)
[13]
Paradine, S. M.; White, M. C. J. Am. Chem. Soc. 2012, 134, 2036.
[14]
Liang, L.; Lü, H.; Yu, Y.; Wang, P.; Zhang, J. Dalton Trans. 2012, 41, 1457.
[15]
Liu, Y.; Guan, X.; Wong, E. L.; Liu, P.; Huang, J.; Che, C.-M. J. Am. Chem. Soc. 2013, 135, 7194.
[16]
Wang, H.; Li, Y.; Wang, Z.; Lou, J.; Xiao, Y.; Qiu, G.; Hu, X.; Altenbach, H.; Liu, P. RSC Adv. 2014, 4, 25287.
[17]
Tseberlidis, G.; Zardi, P.; Caselli, A.; Cancogni, D.; Fusari, M.; Lay, L.; Gallo, E. Organometallics 2015, 34, 3774.
[18]
Thacker, N. C.; Lin, Z.; Zhang, T.; Gilhula, J. C.; Abney, C. W.; Lin, W.-B. J. Am. Chem. Soc. 2016, 138, 3501.
[19]
Alt, I. T.; Plietker, B. Angew. Chem., Int. Ed. 2016, 55, 1519.
[20]
Thacker, N. C.; Ji, P.; Lin, Z.; Urban, A.; Lin, W.-B. Faraday Discuss. 2017, 21, 303.
[21]
Shing, K.; Liu, Y.; Cao, B.; Chang, X.; You, T.; Che, C.-M. Angew. Chem., Int. Ed. 2018, 57, 11947.
[22]
Liu, Y.; You, T.; Wang, T.; Che, C.-M. Tetrahedron 2019, 75, 130607.
[23]
Du, Y.; Xu, Z.; Zhou, C.; Che, C.-M. Org. Lett. 2019, 21, 895.
[24]
Breslow, R.; Gellman, S. H. J. Chem. Soc., Chem. Commun. 1982, 1400.
[25]
King, E. R.; Betley, T. A. Inorg. Chem. 2009, 48, 2361.
[26]
Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2008, 10, 1863.
[27]
Shen, M.; Driver, T. G. Org. Lett. 2008, 10, 3367.
[28]
Bonnamour, J.; Bolm, C. Org. Lett. 2011, 13, 2012.
[29]
Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620.
[30]
Liu, Y.; Che, C.-M. Chem.-Eur. J. 2010, 16, 10494.
[31]
Zhao, X.; Liang, S.; Fan, X.; Yang, T.; Yu, W. Org. Lett. 2019, 21, 1559.
[32]
Liang, S.; Zhao, X.; Yang, T.; Yu, W. Org. Lett. 2020, 22, 1961.
[33]
Kweon, J.; Chang, S. Angew. Chem., Int. Ed. 2021, 60, 2909.
[34]
Prasanthi, A. V. G.; Begum, S.; Srivastava, H. K.; Tiwari, S. K.; Singh, R. ACS Catal. 2018, 8, 8369.
[35]
Zhou, Z.; Tan, Y.; Yamahira, T.; Ivlev, S.; Xie, X.; Riedel, R.; Hemming, M.; Kimura, M.; Meggers, E. Chem 2020, 6, 2024.
[36]
Zhong, D.; Wu, D.; Zhang, Y.; Lu, Z.; Usman, M.; Liu, W.; Lu, X.; Liu, W.-B. Org. Lett. 2019, 21, 5808.
[37]
Liu, W.; Zhong, D.; Yu, C.; Zhang, Y.; Wu, D.; Feng, Y.; Cong, H.; Lu, X.; Liu, W.-B. Org. Lett. 2019, 21, 2673.
[38]
Zhang, Y.; Zhong, D.; Usman, M.; Xue, P.; Liu, W.-B. Chin. J. Chem. 2020, 38, 1651.
[39]
Zhong, D.; Wu, L.-Y.; Wang, X.-Z.; Liu, W.-B. Chin. J. Chem. 2021, 39, 855.
[40]
Liang, S.; Zhao, X; Yang, T.; Yu, W. Org. Lett. 2020, 22, 1961.
[41]
Zhou, Z.; Chen, S.; Qin, J.; Nie, X.; Zheng, X.; Harms, K.; Riedel, R.; Houk, K. N.; Meggers, E. Angew. Chem., Int. Ed. 2019, 58, 1088.
Outlines

/