Chinese Journal of Organic Chemistry >
Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide
Received date: 2021-04-26
Revised date: 2021-05-10
Online published: 2021-05-25
Supported by
National Natural Science Foundation of China(21861019); Natural Science Foundation of Jiangxi Province(20202ACBL203006)
The synthesis of full substituted 1,2,3-triazoles has been accomplished with high efficiency through the reactions of readily availableβ-substituted NH-enaminoesters and tosyl azide with Et3N catalysis. In this method, water was used as the sole medium for the reactions which provide 1,2,3-triazole products with broad scope and moderate to excellent yield. Control experiments disclose that the employment of stable NH-enamines as substrates is the key factor enabling the water mediated synthesis probably via the hydrogen bonding effect between NH group and water. In addition, the novel and selective production ofN-alkyl sulfonamides via the reactions of correspondingN-alkyl enaminoesters and tosyl azide has been observed under identical conditions.
Key words: enamine; annulation; metal-free; pure water medium; 1,2,3-triazole
Xixi Zheng , Yunyun Liu , Jie-Ping Wan . Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2700 -2706 . DOI: 10.6023/cjoc202104053
[1] | (a) Lipshutz,B. H.; Ghorai, S.; Cortes-Clerget, M. Chem.-Eur. J. 2018, 24,6672. |
[1] | (b) Gawande,M. B.; Bonifácio,V. D.B.; Luque, R.; Branco,P. S.; Varma,R. S. Chem. Soc. Rev. 2013, 42,5522. |
[1] | (c) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39,301. |
[2] | (a) Butler,R. N.; Goyne,A. G. Chem. Rev. 2010, 110,6302. |
[2] | (b) Chanda, A.; Fokin,V. V. Chem. Rev. 2009, 109,725. |
[2] | (c) Sun, K.; Lv,Q. -Y.; Chen,X. -L.; Qu,L. -B.; Yu, B. Green Chem. 2021, 23,232. |
[2] | (d) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39,3353 (in Chinese). |
[2] | ( 陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学. 2019, 39,3353.) |
[3] | (a) Li, Y.; Huang, Y.; Gui, Y.; Sun, J.; Li, J.; Zha, Z.; Wang, Z. Org. Lett. 2017, 19,6416. |
[3] | (b) Zhang, F.; Tian, Y.; Li, G.; Qu, J. J. Org. Chem. 2015, 80,1107. |
[3] | (c) Álvarez, M.; Gava, R.; Rodríguez,M. R.; Rull,S. G.; Pérez,P. J. ACS Catal. 2017, 7,3707. |
[3] | (d) Zhang, N.; Yang, D.; Wei, W.; Yuan, L.; Nie, F.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80,3258. |
[3] | (e) Tang, S.; Li, L.; Ren, X.; Li, J.; Yang, G.; Li, H.; Yuan, B. Green Chem. 2019, 21,2899. |
[4] | (a) Peng, S.; Song,Y. -X.; He,J. -Y.; Tang,S. -S.; Tan,J. -X.; Cao, Z.; Lin,Y. -W.; He,W. -M. Chin. Chem. Lett. 2019, 30,2287. |
[4] | (b) Wu, Y.; Lin,Y. -W.; He,W. -M. Chin. Chem. Lett. 2020, 31,2999. |
[4] | (c) Shukla, P.; Asati, A.; Bhardiya,S. R.; Singh, M.; Rai,V. K.; Rai, A. J. Org. Chem. 2020, 85,15552. |
[5] | (a) Tang, L.; Yang, Y.; Wen, L.; Yang, X.; Wang, Z. Green Chem. 2016, 18,1224. |
[5] | (b) Lin, Y.; Lu, G.; Wang, G.; Yi, W. J. Org. Chem. 2017, 82,382. |
[6] | (a) Chen, L.; Huang, R.; Li, K.; Yun,X. -H.; Yang,C. -L.; Yan,S. -J. Green Chem. 2020, 22,6943. |
[6] | (b) Husain,A. A.; Bisht, K. J. Org. Chem. 2020, 85,9928. |
[6] | (c) Köhling, S.; Exner,M. P.; Nojoumi, S.; Schiller, J.; Budisa, N.; Rademann, J. Angew. Chem. Int. Ed. 2016, 55,15510. |
[6] | (d) Yang, J.; Mei, F.; Fu, S.; Gu, Y. Green Chem. 2018, 20,1367. |
[6] | (e) Reddy,G. T.; Kumar, G.; Reddy,N. C.G. Adv. Synth. Catal. 2018, 360,995. |
[6] | (f) Yang, L.; Wu, Y.; Yang, Y.; Wen, C.; Wan,J. -P. Beilstein J. Org. Chem. 2018, 14,2348. |
[6] | (g) Chen, X.; Xia, F.; Zhao, Y.; Ma, J.; Zhang, D.; Yang, L. Sun, P. Chin. J. Chem. 2020, 38,1239. |
[6] | (h) Sun, G.; He, Y.; Tian, C.; Borzov, M.; Hu, Q.; Nie, W. Acta Chem. Sinica 2019, 77,166 (in Chinese). |
[6] | ( 孙国峰, 何云清, 田冲, Borzov Maxim, 胡启山, 聂万丽, 化学学报, 2019, 77,166.) |
[7] | (a) Meldal, M.; Tomøe,C. W. Chem. Rev. 2008, 108,2952. |
[7] | (b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113,4905. |
[7] | (c) Jiang, Y.; Sun, R.; Tang,X. -Y.; Shi, M. Chem.-Eur. J. 2016, 22,17910. |
[8] | For selected reviews, see: (a) Opsomer, T.; Dehaen,, W. Chem. Commun. 2021, 57,1568. |
[8] | (b) Ramasastry,S. S.V. Angew. Chem. Int. Ed. 2014, 53,14310. |
[8] | (c) Lima,C. G.S.; Ali, A.; Berkel,S. S.; Westermann, B.; Paixão,M. W. Chem. Commun. 2015, 51,10784. |
[9] | (a) Ramachary,D. B.; Shashank,A. B.; Karthik, S. Angew. Chem. Int. Ed. 2014, 53,10420. |
[9] | (b) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. Angew. Chem. Int. Ed. 2014, 53,10155. |
[9] | (c) Zhang, D.; Fan, Y.; Yan, Z.; Nie, Y.; Xiong, X.; Gao, L. Green Chem. 2019, 21,4211. |
[9] | (d) Reddy,G. S.; Reddy,L. M.; Kumar,A. S.; Ramachary,D. B. J. Org. Chem. 2020, 85,15488. |
[10] | (a) Belkheira, M.; Abed,D. E.; Pons,J. -M.; Bressy, C. Chem.-Eur. J. 2011, 17,12917. |
[10] | (b) Ramachary,D. B.; Krishna,P. M.; Gujral, J.; Reddy,G. S. Chem.-Eur. J. 2015, 21,16775. |
[10] | (c) Guo, N.; Liu, X.; Xu, H.; Zhou, X.; Zhao, H. Org. Biomol. Chem. 2019, 17,6148. |
[10] | (d) Danence,L. J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Chem.-Eur. J. 2011, 17,3584. |
[10] | (e) Nelsona, R.; Kesternicha, V.; Pérez-Fehrmanna, M.; Jaldina, S.; Marcourtb, L.; Christen, P. J. Chem. Res. 2016, 40,453. |
[11] | (a) Li, W.; Wang, J. Angew. Chem. Int. Ed. 2014, 53,14186. |
[11] | (b) Ramachary,D. B.; Ramakumar, K.; Narayana,V. V. Chem.-Eur. J. 2008, 14,9143. |
[11] | (c) Das, J.; Dey, S.; Pathak, T. J. Org. Chem. 2019, 84,15437. |
[12] | (a) Agard,N. J.; Prescher,J. A.; Bertozzi,C. R. J. Am. Chem. Soc. 2004, 126,15046. |
[12] | (b) Kwok,S. W.; Fotsing,J. R.; Fraser,R. J.; Rodionov,V. O.; Fokin,V. V. Org. Lett. 2010, 12,4217. |
[13] | (a) Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. Angew. Chem. Int. Ed. 2013, 52,13265. |
[13] | (b) Wan,J. -P.; Cao, S.; Liu, Y. Org. Lett. 2016, 18,6034. |
[13] | (c) Deng, L.; Cao, X.; Liu, Y.; Wan,J. -P. J. Org. Chem. 2019, 84,14179. |
[13] | (d) De Nino, A.; Algieri, V.; Talllarida, M.A.; Constanzo, P.; Pedron, M.; Tejero, T.; Merino, P.; Maiuolo, L. Eur. J. Org. Chem. 2019, 33,5725. |
[13] | (e) Huang, W.; Zhu, C.; Li, M.; Yu, Y.; Wu, W.; Tu, Z.; Jiang, H. Adv. Synth. Catal. 2018, 360,3117. |
[13] | (f) Thomas, J.; Goyvaerts, V.; Liekens, S.; Dehaen, W. Chem.-Eur. J. 2016, 22,9966. |
[13] | (g) Cao, S.; Liu, Y.; Hu, C.; Wen, C.; Wan,J. -P. ChemCatChem 2018, 10,5007. |
[14] | (a) Shu,W. -M.; Zhang,X. -F.; Zhang,X. -X.; Li, M.; Wang,A. -J.; Wu,A. -X. J. Org. Chem. 2019, 84,14919. |
[14] | (b) Berkel,S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Vasilev, D.; Wessjohann,L. A.; Abbas, M.; Westermann, B. Angew. Chem. Int. Ed. 2012, 51,5343. |
[15] | For reviews and selected examples, see: (a) Wan,J. -P.; Hu, D.; Liu, Y.; Sheng,, S. ChemCatChem 2015, 7,901. |
[15] | (b) Chen, Z.; Gao, G.; Song, J.; Ren, H. Chin. J. Chem. 2017, 35,1797. |
[15] | (c) Shang,Z. -H.; Zhang,Z. -X.; Weng,W. -Z.; Wang,Y. -F.; Cheng,T. -W.; Zhang,Q. -Y.; Song,L. -Q.; Shao,T. -Q.; Liu,K. -X.; Zhu,Y. -P. Adv. Synth. Catal. 2020, 363,490. |
[15] | (d) Wan,J. -P.; Cao, S.; Liu, Y. J. Org. Chem. 2015, 80,9028. |
[15] | (e) Panda, S.; Maity, P.; Manna, D. Org. Lett. 2017, 19,1534. |
[15] | (f) Cai,Z. -J.; Lu,X. -M.; Zi, Y.; Yang, C.; Shen,L. -J.; Li, J.; Wang,S. -Y.; Ji,S. -J. Org. Lett. 2014, 16,5108. |
[15] | (g) Wu, P.; He, Y.; Wang, H.; Zhou,Y. -G.; Yu, Z. Org. Lett. 2020, 22,310. |
[15] | (h) Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20,17635. |
[16] | (a) Guo, Y.; Wang, G.; Wei, L.; Wan,J. -P. J. Org. Chem. 2019, 84,2984. |
[16] | (b) Zheng, X.; Wan,J. -P. Adv. Synth. Catal. 2019, 361,5690. |
[16] | (c) Gan, L.; Wei, L.; Wan,J. -P. ChemistrySelect 2020, 5,7822. |
[16] | (d) Fu, L.; Cao, X.; Wan,J. -P. Chin. J. Chem. 2020, 38,254. |
[17] | For a few recent examples, see (a) Gan, L.; Yu, Y.; Liu, L.; Wan,J. -P. J. Org. Chem. 2021, 86,1231. |
[17] | (b) Fu, L.; Xu, Z.; Wan,J. -P.; Liu, Y. Org. Lett. 2020, 24,9518. |
[17] | (c) Hu, D.; Yang, L.; Wan,J. -P. Green Chem. 2020, 22,6773. |
[17] | (d) Klintworth, R.; de Koning,C. B.; Opatz, T.; Michael,J. P. J. Org. Chem. 2019, 84,11025. |
[17] | (e) Chen, J.; Guo, P.; Zhang, J.; Rong, J.; Sun, W.; Jiang, Y.; Loh,T. -P. Angew. Chem. Int. Ed. 2019, 58,12674. |
[17] | (f) Gao, Y.; Liu, Y.; Wan,J. -P. J. Org. Chem. 2019, 84,2243. |
[17] | (g) Shang, Z.; Chen, Q.; Xing, L.; Zhang, Y.; Wait, L.; Du, Y. Adv. Synth. Catal. 2019, 361,4926. |
[17] | (h) Zhou, P.; Hu, B.; Li, L.; Rao, K.; Yang, J.; Yu, F. J. Org. Chem. 2017, 82,13268. |
[17] | (i) Gu, F.; Yao, W. Chin. J. Org. Chem. 2020, 40,4384 (in Chinese). |
[17] | ( 谷枫, 姚伟军, 有机化学, 2020, 40,4384.) |
[17] | (j) Wang, G.; Guo, Y.; Wan,J. -P. Chin. J. Org. Chem. 2020, 40,645 (in Chinese). |
[17] | ( 王国栋, 郭艳辉, 万结平, 有机化学, 2020, 40,645.) |
[17] | (k) Yu, Q.; Liu, Y.; Wan,J. -P. Chin. Chem. Lett. 2021,DOI: 10.1016/j.cclet.2021.04.037 |
[18] | (a) Nitin,A. R.; Varun K.; Vipin,A. N. Monatsh. Chem. 2010, 141,1329. |
[18] | (b) Nishiwaki, N.; Nishimoto, T.; Tamura, M.; Ariga, M. Synlett 2006,1437. |
[19] | Tang, X.; Huang, L.; Qi, C.; Wu, X.; Wu, W.; Jiang, H. Chem. Commun. 2013, 49,6102. |
/
〈 |
|
〉 |