ARTICLES

Palladium-Catalyzed Tandem Heck Cyclization Reactions to Access the Bridged N-Heterocyclic Compounds

  • Man Li ,
  • Ying Wang ,
  • Yunhe Xu
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026
*Corresponding author.E-mail:

Received date: 2021-04-29

  Revised date: 2021-05-11

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(21871240); Fundamental Research Funds for the Central Universities(WK2060000017)

Abstract

Palladium-catalyzed intramolecular Heck tandem cyclization reactions were developed. With palladium iodide as a catalyst and 4-(dimethylamino)triphenylphosphine as a ligand, 3-substituted indoleamide derivatives were converted to bridged N-heterocyclic products in good yields under simple reaction conditions. The tandem reactions are featured by efficient construction of fused ring compounds in one pot and good functional group compatibility.

Cite this article

Man Li , Ying Wang , Yunhe Xu . Palladium-Catalyzed Tandem Heck Cyclization Reactions to Access the Bridged N-Heterocyclic Compounds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3073 -3082 . DOI: 10.6023/cjoc202104059

References

[1]
(a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
[1]
(b) Pennington, L.-D.; Moustaskas, D.-T. J. Med. Chem. 2017, 60, 3552.
[1]
(c) Zeni, G.; Larock, R.-C. Chem. Rev. 2006, 106, 4644.
[1]
(d) Zheng, Y.; Xie, Z.-Z.; Chen, K.; Xiang, H.-Y.; Yang, H. Chin. J. Org. Chem. 2021, 41, 1. (in Chinese)
[1]
(郑雨, 谢珍珍, 陈凯, 向皞月, 阳华, 有机化学, 2021, 41, 1.)
[2]
(a) Psarra, V.; Fousteris, M.-A.; Hennig, L.; Giannis, A.; Nikolaropoulos, S.-S. Tetrahedron 2016, 72, 2376.
[2]
(b) De, Candia, M.; Zaetta,, G.; Denora,, N.; Cellamare,, S.; Altomare,, C.-D. Eur. J. Med. Chem. 2017, 125, 288.
[2]
(c) Purgatorio, R.; De Candia, M.; Toma, M.; Ivanova, O.-A.; Voskressensky, L.-G.; Altomare, C.-D. Eur. J. Med. Chem. 2019, 77, 414.
[3]
Ping, Y.-Y.; Li, Y.-X.; Zhu, J.-P.; Kong, W.-Q. Angew. Chem., Int. Ed. 2019, 58, 1562.
[4]
(a) Shilov, A.-E.; ShulQpin, G.-B. Chem. Rev. 1997, 97, 2879.
[4]
(b) Bergman, R.-G. Nature 2007, 446, 391.
[4]
(c) Chen, X.; Engle, K.-M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[5]
(a) Frignani, F.; Rangoni, F.; Catellani, M. Angew. Chem., Int. Ed. 1997, 36, 119.
[5]
(b) Della, Ca, N.; Fontana,, M.; Motti,, E.; Catellani,, M. Acc. Chem. Res. 2016, 49, 1389.
[5]
(c) Ye, J.-T.; Lantens, M. Nat. Chem. 2015, 7, 863.
[6]
Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron Lett. 1988, 29, 4329.
[7]
(a) Shen, C.; Liu, R. R.; Fan, R. J.; Li, Y. L.; Xu, T. F.; Jia, Y.-X. J. Am. Chem. Soc. 2015, 137, 4936.
[7]
(b) Kong, W. Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2017, 56, 3987.
[7]
(c) Zhang, Z.-M.; Xu, B.; Qian, Y.-Y.; Wu, L.-Z.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2018, 57, 10373.
[8]
(a) Newman, S.-G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
[8]
(b) Newman, S.-G.; Howell, J.-K.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 14916.
[8]
(c) Petrone, D.-A.; Lischka, M.; Lautens, M. Angew. Chem., Int. Ed. 2013, 52, 10635.
[8]
(d) Petrone, D. A.; Yoon, H.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 7908.
[8]
(e) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Ji, D.-T.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 8110.
[9]
(a) Pinto, A.; Jia, Y.-X.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2007, 13, 961.
[9]
(b) Yoon, H.; Petrone, D.-A.; Lautens, M. Org. Lett. 2014, 16, 6420.
[9]
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
[10]
(a) Vachhani, D.-D.; Butani, H.-H.; Sharma, N.; Bhoya, U.-C.; Shah, A.-K.; Van der Eycken, E.-V. Chem. Commun. 2015, 51, 14862.
[10]
(b) Yoon, H.; Jiang, Y.-J.; Lautens, M. Synthesis 2016, 48, 1483.
[10]
(c) Jiang, Z.-W.; Hou, L.-L.; Ni, C.-J.; Wang, D.; Tong, X.-F. Chem. Commun. 2017, 53, 4270.
[11]
Jaegli, S.; Erb, W.; Retailleau, P.; Vors, J.-P.; Neuville, L.; Zhu, J.-P. Chem.-Eur. J. 2010, 16, 5863.
[12]
(a) Fretwell, P.; Meerholtz, C.; Sridharan, V.; Grigg, R. Tetrahedron 1994, 50, 359.
[12]
(b) Ruck, R.-T.; Huffman, M.-A.; Kim, M.-M.; Shevlin, M.; Kandur, W.-V.; Davies, I.-W. Angew. Chem., Int. Ed. 2008, 47, 4711.
[12]
(c) Satyanarayana, G.; Maichle-Mossmer, C.; Maier, M.-E. Chem. Commun. 2009, 1571.
[12]
(d) Piou, T.; Neuville, L.; Zhu, J.-P. Org. Lett. 2012, 14, 3760.
[12]
(e) Piou, T.; Neuville, L.; Zhu, J.-P. Angew. Chem., Int. Ed. 2012, 124, 11729.
[12]
(f) Ye, J.-T.; Shi, Z.-H.; Sperger, T.; Yasukawa, Y.; Kingston, C.; Schoenebeck, F.; Lautens, M. Nat. Chem. 2017, 9, 361.
[13]
(a) Zheng, H.-J.; Zhu, J.-P.; Shi, Y.-A. Angew. Chem., Int. Ed. 2014, 53, 11280.
[13]
(b) Sickert, M.; Weinstabl, H.; Peters, B.; Hou, X.; Lautens, M. Angew. Chem., Int. Ed. 2014, 126, 5247.
[13]
(c) Yoon, H.; Lossouarn, A.; Landau, F.; Lautens, M. Org. Lett. 2016, 18, 6324.
[13]
(d) Perez-Gomez, M.; Hernandez-Ponte, S.; Bautista, D.; Garcia-Lopez, J.-A. Chem. Commun. 2017, 53, 2842.
[13]
(e) Shao, C.-D.; Wu, Z.; Ji, X.-M.; Zhou, B.; Zhang, Y.-H. Chem. Commun. 2017, 53, 10429.
[13]
(f) Yoon, H.; Rolz, M.; Landau, F.; Lautens, M. Angew. Chem., Int. Ed. 2017, 56, 10920.
[13]
(g) Luo, X.-A.; Zhou, L.-W.; Lu, H.-Y.; Deng, G.-B.; Liang, Y.; Yang, C.-M. Org. Lett. 2019, 21, 9960.
[13]
(h) Wollenburg, M.; Bajohr, J.; Marchese, A.-D.; Whyte, A.; Glorius, F.; Lautens, M. Org. Lett. 2020, 22, 3679.
[14]
(a) Wilson, J. E. Tetrahedron Lett. 2012, 53, 2308.
[14]
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2012, 14, 3858.
[14]
(c) Schempp, T.-T.; Daniels, B.-E.; Staben, S.-T.; Stivala, C.-E. Org. Lett. 2017, 19, 3616.
[14]
(d) Zhang, Z.-M.; Xu, B.; Wu, L.-Z.; Qian, Y.-Y.; Wu, Y.-Q.; Zhou, L.-J.; Zhang, J.-L. Angew. Chem., Int. Ed. 2019, 58, 14653.
[14]
(e) Zhou, M.-B.; Huang, X.-C.; Liu, Y.-Y.; Song, R.-J.; Li, J.-H. Chem.-Eur. J. 2014, 20, 1843.
[14]
(f) Liu, R.-R.; Wang, Y.-G.; Li, Y.-L.; Huang, B.-B.; Liang, R.-X.; Jia, Y.-X. Angew. Chem., Int. Ed. 2017, 56, 7475.
[14]
(g) Zhou, L.-J.; Li, S.-L.; Xu, B.; Ji, D.-T.; Wu, L.-Z.; Liu, Y.; Zhang, Z.-M.; Zhang, J.-L. Angew. Chem., Int. Ed. 2020, 59, 2769.
[14]
(h) Bai, X.-F.; Wu, C.-Z.; Ge, S.-Z.; Lu, Y.-X. Angew. Chem., Int. Ed. 2020, 59, 2764.
[15]
(a) Kennewellb, P.; Teasdale, A. J.; Grigg, R. Tetrahedron Lett. 1992, 33, 1189.
[15]
(b) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2010, 12, 3723.
[15]
(c) Hu, M.-A.; Gao, Y.; Li, J.-X.; Wu, W.-Q.; Li, C.-S.; Jiang, H.; Jiang, H.-F. Org. Biomol. Chem. 2018, 16, 7383.
[15]
(d) Hu, H.-Z.; Teng, F.; Liu, J.; Hu, W.-M.; Luo, S.; Zhu, Q. Angew. Chem., Int. Ed. 2019, 58, 9225.
[16]
(a) Kong, W.-Q.; Wang, Q.; Zhu, J.-P. Angew. Chem., Int. Ed. 2016, 55, 9714.
[16]
(b) Yao, T.-L.; Wang, B.; He, D.; Zhang, X.-F.; Li, X.; Fang, R. Org. Lett. 2020, 22, 6784.
[17]
(a) Liu, X.-L.; Ma, X.-N.; Huang, Y.-Z.; Gu, Z.-H. Org. Lett. 2013, 15, 4814.
[17]
(b) Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. J. Org. Chem. 2015, 80, 7456.
[17]
(c) Liu, X.-L.; Li, B.; Gu, Z.-H. J. Org. Chem. 2015, 80, 7547.
[18]
Wang, M.; Zhang, X.; Zhuang, Y.-X.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 1341.
[19]
(a) Tang, S.-Y.; Guo, Q.-X.; Fu, Y. Chem.-Eur. J. 2011, 17, 13866.
[19]
(b) Glover, B.; Harvey, K.-A.; Liu, B.; Sharp, M.-J. Org. Lett. 2003, 5, 301.
[19]
(c) Petrone, D.-A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838.
Outlines

/