ARTICLES

Design, Synthesis and Bioactivity of Fluopyram Derivatives Containing Diamide Moiety

  • Qingbo Xu ,
  • Peibo Liang ,
  • Huizhe Lu ,
  • Shuhui Jin ,
  • Yanhong Dong ,
  • Jianjun Zhang
Expand
  • College of Science, China Agricultural University, Beijing 100193
*Corresponding authors.E-mail: ;

Received date: 2021-03-10

  Revised date: 2021-04-07

  Online published: 2021-06-02

Supported by

National Key R&D Program of China(2018YFD0200100); National Natural Science Foundation of China(21772230)

Abstract

According to the principle of combination of bioactive substructure, the structure of diamide was introduced into fluopyram, and 22 novel fluopyram derivatives containing diamide were designed and synthesized. The structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The inhibitory activities of the target compounds against four plant pathogenic fungi and in vitro insecticidal activities against Caenorhabditis elegans were studied. The results showed that under the concentration of 50 mg/L, most of the compounds showed moderate fungicide activity against Cytospora sp. and Sclerotinia sclerotiorum with inhibition rate over 80%. The EC50 of N-(2-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)ethyl)- 2-(3-fluorobenzamido)benzamide (7f) to Cytospora sp. was 6.12 mg/L, which is higher than fluopyram (35.5 mg/L), the SDH essay showed that enzyme inhibition rate of 7f reached 90.1%, and the mortality rate against C. elegans was 87% at 200 mg/L. The results of molecular docking show that the SDH may be a potential target of the compounds.

Cite this article

Qingbo Xu , Peibo Liang , Huizhe Lu , Shuhui Jin , Yanhong Dong , Jianjun Zhang . Design, Synthesis and Bioactivity of Fluopyram Derivatives Containing Diamide Moiety[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3116 -3125 . DOI: 10.6023/cjoc202103021

References

[1]
Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. J. Agric. Food Chem. 2019, 67, 12357.
[2]
Silva, F. J.; Campos, V. P.; Oliveira, D. F.; Gomes, V. A.; Barros, A. F.; Din, Z. U.; Rodrigues‐Filho, E. J. Phytopathol. 2019, 167, 197.
[3]
Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. J. Agric. Food Chem. 2013, 61, 41.
[4]
Rao, S. V.; Sriram, K. I. J. Enzyme Inhib. Med. Chem. 1997, 11, 293.
[5]
Inaoka, D. K.; Shiba, T.; Sato, D.; Balogun, E. O.; Sasaki, T.; Nagahama, M.; Oda, M.; Matsuoka, S.; Ohmori, J.; Honma, T.; Inoue, M.; Kita, K.; Harada, S. Int. J. Mol. Sci. 2015, 16, 15287.
[6]
Keohane, C. E.; Steele, A. D.; Fetzer, C.; Khowsathit, J.; Van Tyne, D.; Moynie, L.; Gilmore, M. S.; Karanicolas, J.; Sieber, S. A.; Wuest, W. M.. J. Am. Chem. Soc. 2018, 140, 1774.
[7]
Diaz-Quiroz, D. C.; Cardona-Felix, C. S.; Viveros-Ceballos, J. L.; Reyes-Gonzalez, M. A.; Bolivar, F.; Ordonez, M.; Escalante, A. J. Enzyme Inhib. Med. Chem. 2018, 33, 397.
[8]
Liang, P.; Shen, S.; Xu, Q.; Wang, S.; Jin, S.; Lu, H.; Dong, Y.; Zhang, Bioorg. Med. Chem. 2021, 29, 115846.
[9]
Li, A.; Li Z.; Zhao Y.; Yao T.; Cheng J.; Zhao J. Chin. J. Org. Chem. 2020, 40, 2836. (in Chinese)
[9]
(李安邦, 李中珊, 赵洋, 姚停停, 程敬丽, 赵金浩, 有机化学, 2020, 40, 2836.)
[10]
Xiao, T.; Cheng, W.; Qian, W.; Zhang, T.; Lu, T.; Gao, Y.; Tang, X. Chin. J. Org. Chem. 2020, 40, 1704. (in Chinese)
[10]
(肖婷婷, 程玮, 钱伟烽, 张婷婷, 陆童, 高扬, 唐孝荣, 有机化学, 2020, 40, 1704.)
[11]
Hua, X.; Liu, N.; Fan, Z.; Zong, G.; Ma, Y.; Lei, K.; Yin, H.; Wang, G. Chin. J. Org. Chem. 2019, 39, 2581. (in Chinese)
[11]
(华学文, 刘南南, 范志金, 宗广宁, 马翼, 雷康, 殷昊, 王桂清, 有机化学, 2019, 39, 2581.)
[12]
Chen, J.; Yi, C.; Wang, S.; Wu, S.; Li, S.; Hu, D.; Song, B. Bioorg. Med. Chem. Lett. 2019, 29, 1203.
[13]
Good, J. A.; Silver, J.; Nunez-Otero, C.; Bahnan, W.; Krishnan, K. S.; Salin, O.; Engstrom, P.; Svensson, R.; Artursson, P.; Gylfe, A.; Bergstrom, S.; Almqvist, F. J. Med. Chem. 2016, 59, 2094.
[14]
Wang, P.-Y.; Shao, W.-B.; Xue, H.-T.; Fang, H.-S.; Zhou, J.; Wu, Z.-B.; Song, B.-A.; Yang, S. Res. Chem. Intermed. 2017, 43, 6115.
[15]
Sharma, S.; Gangal, S.; Rauf, A.; Zahin, M. Arch. Pharm. (Weinheim, Ger.) 2008, 341, 714.
[16]
Nayyab, S.; O'Connor, M.; Brewster, J.; Gravier, J.; Jamieson, M.; Magno, E.; Miller, R. D.; Phelan, D.; Roohani, K.; Williard, P.; Basu, A.; Reid, C. W. ACS Infect. Dis. 2017, 3, 421.
[17]
Pejchalova, M.; Havelek, R.; Kralovec, K.; Ruzickova, Z.; Pejchal, V. Med. Chem. Res. 2017, 26, 1847.
[18]
Clark, D. A.; Lahm, G. P.; Smith, B. K.; Barry, J. D.; Clagg, D. G. Bioorg. Med. Chem. 2008, 16, 3163.
[19]
Moradi, W.; Himmler, W.; Muller, T.; Schnatterer, A.; Schlegel, G. EP 2014074212, 2015.
[20]
Chen, X.; Jia, H.; Li, Z.; Xu, X. Chin. Chem. Lett. 2019, 30, 1207.
[21]
Wang, G.; Chen, X.; Deng, Y.; Li, Z.; Xu, X. J. Agric. Food Chem. 2015, 63, 6883.
[22]
Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Pest Manage. Sci. 2016, 72, 125.
[23]
Tang, Z.; Li, X.; Yao, Y.; Qi, Y.; Wang, M.; Dai, N.; Wen, Y.; Wan, Y.; Peng, L. Bioorg. Med. Chem. 2019, 27, 2572.
[24]
Zhang, A.; Yue, Y.; Yang, J.; Shi, J.; Tao, K.; Jin, H.; Hou, T. J. Agric. Food Chem. 2019, 67, 5008.
[25]
Zeun, R.; Scalliet, G.; Oostendorp, M. Pest Manage. Sci. 2013, 69, 527.
Outlines

/