Chinese Journal of Organic Chemistry >
Research Progress of Suzuki-Miyaura Cross-Coupling Reaction Mechanism
Received date: 2021-03-22
Revised date: 2021-04-29
Online published: 2021-06-02
Supported by
National Natural Science Foundation of China(21772003); National Natural Science Foundation of China(21933001); National Natural Science Foundation of China(22071004)
During the past several decades, Suzuki-Miyaura cross-coupling reaction has emerged and flourished as one of the most remarkable and practical methods to construct C—C bond. The substrates, organoboronic compounds, are usually more stable, less toxic and easier to obtain compared with other metal or metalloid alternatives. Suzuki-Miyaura cross-coupling reaction possesses extraordinary merits of demonstrated efficiency, broad functional group compatibility and mild reaction conditions. It has been the premier method to construct C—C bond for organic synthetic chemists and has been widely applied in the industrial syntheses. The rapid development of Suzuki-Miyaura cross-coupling reaction is accompanied with the progress of mechanism studies. It is well accepted that the catalytic cycle of Suzuki-Miyaura cross-coupling reaction contains three main steps: oxidative addition of organic halides to Pd catalysts, transmetalation between oxidative addition intermediates and organoboronic compounds, and reductive elimination from transmetalation intermediates to form C—C bond along with regenerating Pd catalysts. However, these three main steps can be influenced by diverse reaction conditions, and different reaction pathways may occur within each single step. Furthermore, beyond the oxidative addition and transmetalation intermediates, other transient but crucial intermediates may exist. To figure out these issues and discover more insights into Suzuki- Miyaura cross-coupling reaction, numerous researchers have designed and conducted systematic investigations. Herein, the recent progress of mechanism studies is summarized and discussed. The steps of oxidative addition, transmetalation and reductive elimination are discussed in detail. Moreover, a brief introduction of transition-metal-free and base-free Suzuki- Miyaura cross-coupling reactions which show more possibilities of the reaction mechanism is given. Besides summary of precedent research works, our opinions about future development of the mechanism studies are also given. Although breakthroughs have been made in the mechanism studies, further investigations are needed to bring comprehensive knowledge of this reaction and help us further optimize the reaction conditions.
Lei Zhang , Chen Yang , Xuefeng Guo , Fanyang Mo . Research Progress of Suzuki-Miyaura Cross-Coupling Reaction Mechanism[J]. Chinese Journal of Organic Chemistry, 2021 , 41(9) : 3492 -3510 . DOI: 10.6023/cjoc202103040
[1] | Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385. |
[2] | (a) Miyaura, N.; Suzuki, A. J. Chem. Soc., hem. Commun. 1979, 866. |
[2] | (b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437. |
[3] | Liu, Q.-Y.; Zhang, L.; Mo, F.-Y. Acta Chim. Sinica 2020, 78, 1297. (in Chinese). |
[3] | ( 刘谦益, 张雷, 莫凡洋, 化学学报, 2020, 78, 1297.) |
[4] | Beller, M.; Blaser, H.-U. Organometallics as Catalysts in the Fine Chemical Industry, Vol. 42. Springer, Heidelberg, 2012. |
[5] | Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Nat. Rev. Drug Discovery 2018, 17, 709. |
[6] | Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027. |
[7] | (a) Liu, M.; Su, S.-J.; Jung, M.-C.; Qi, Y.; Zhao, W.-M.; Kido, J. Chem. Mater. 2012, 24, 3817. |
[7] | (b) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513. |
[8] | (a) Lipton, M. F.; Mauragis, M. A.; Maloney, M. T.; Veley, M. F.; VanderBor, D. W.; Newby, J. J.; Appell, R. B.; Daugs, E. D. Org. Process Res. Dev. 2003, 7, 385. |
[8] | (b) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. |
[9] | Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. |
[10] | (a) Hartwig, J. F. Organotransition Metal Chemistry: from Bonding to Catalysis, University Science Books, Herndon, 2010, Chapter 7. |
[10] | (b) Labinger, J. A. Organometallics 2015, 34, 4784. |
[11] | (a) Netherton, M. R.; Fu, G. C. Angew. Chem.,Int. Ed. 2002, 41, 3910. |
[11] | (b) Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem., nt. Ed. 2003, 42, 5749. |
[12] | (a) Fauvarque, J.-F.; Pflüger, F.; Troupel, M. J. Organomet. Chem. 1981, 208, 419. |
[12] | (b) Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276. |
[12] | (c) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810. |
[13] | Senn, H. M.; Ziegler, T. Organometallics 2004, 23, 2980. |
[14] | (a) Vermeeren, P.; Sun, X.; Bickelhaupt, F. M. Sci. Rep. 2018, 8, 10729. |
[14] | (b) Joy, J.; Stuyver, T.; Shaik, S. J. Am. Chem. Soc. 2020, 142, 3836. |
[15] | (a) Portnoy, M.; Milstein, D. Organometallics 1993, 12, 1665. |
[15] | (b) Maes, B. U. W.; Verbeeck, S.; Verhelst, T.; Ekomié, A.; von Wolff, N.; Lefèvre, G.; Mitchell, E. A.; Jutand, A. Chem.-Eur. J. 2015, 21, 7858. |
[15] | (c) Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287. |
[16] | (a) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111. |
[16] | (b) Kaga, A.; Chiba, S. ACS Catal. 2017, 7, 4697. |
[16] | (c) Sun, X.; Dong, X.; Liu, H.; Liu, Y. Adv. Synth. Catal. 2021, 363, 1527. |
[17] | (a) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820. (in Chinese). |
[17] | ( 张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.) |
[17] | (b) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230. |
[18] | (a) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099. |
[18] | (b) Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem., nt. Ed. 2002, 41, 1945. |
[18] | (c) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662. |
[18] | (d) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340. |
[19] | Wang, J. Y.; Strom, A. E.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 7979. |
[20] | (a) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496. |
[20] | (b) Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692. |
[20] | (c) Meconi, G. M.; Vummaleti, S. V. C.; Luque-Urrutia, J. A.; Belanzoni, P.; Nolan, S. P.; Jacobsen, H.; Cavallo, L.; Solà, M.; Poater, A. Organometallics 2017, 36, 2088. |
[20] | (d) Szilvási, T.; Veszprémi, T. ACS Catal. 2013, 3, 1984. |
[20] | (e) Braga, A. A. C.; Ujaque, G.; Maseras, F. Organometallics 2006, 25, 3647. |
[21] | Tsuji, J.Palladium Reagents and Catalysts: New Perspectives for the 21st Century, John Wiley & Sons, Chichester, 2006. |
[22] | Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 21, 691. |
[23] | Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., nt. Ed. 2014, 53, 1669. |
[24] | (a) Fu, G. C. ACS Cent. Sci. 2017, 3, 692. |
[24] | (b) Cheng, L.; Zhou, Q.-L. Acta Chim. Sinica 2020, 78, 1017. (in Chinese). |
[24] | ( 程磊, 周其林, 化学学报, 2020, 78, 1017.) |
[25] | (a) Fricke, C.; Sperger, T.; Mendel, M.; Schoenebeck, F. Angew. Chem., nt. Ed. 2021, 60, 3355. |
[25] | (b) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840. |
[26] | Uson, R.; Fornies, J.; Navarro, R. J. Organomet. Chem. 1975, 96, 307. |
[27] | Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., hem. Commun. 1986, 1722. |
[28] | (a) Canty, A. J. Dalton Trans. 2009, 10409. |
[28] | (b) Muñiz, K. Angew. Chem., nt. Ed. 2009, 48, 9412. |
[28] | (c) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824. |
[28] | (d) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. |
[28] | (e) Zhang, H.; Lei, A. Dalton Trans. 2011, 40, 8745. |
[29] | Catellani, M.; Chiusoli, G. P. J. Organomet. Chem. 1988, 346, C27. |
[30] | Catellani, M.; Mann, B. E. J. Organomet. Chem. 1990, 390, 251. |
[31] | Bocelli, G.; Catellani, M.; Ghelli, S. J. Organomet. Chem. 1993, 458, C12. |
[32] | Catellani, M. Synlett 2003, 298. |
[33] | Motti, E.; Mignozzi, A.; Catellani, M. J. Mol. Catal. A: Chem. 2003, 204-205, 115. |
[34] | Juríček, M.; Brath, H.; Kasák, P.; Putala, M. J. Organomet. Chem. 2007, 692, 5279. |
[35] | Kasák, P.; Mikláš, R.; Putala, M. J. Organomet. Chem. 2001, 637, 318. |
[36] | Gladiali, S.; Fabbri, D. Chem. Ber. 1997, 130, 543. |
[37] | Brath, H.; Mešková, M.; Putala, M. Eur. J. Org. Chem. 2009, 2009, 3315. |
[38] | Takemoto, T.; Iwasa, S.; Hamada, H.; Shibatomi, K.; Kameyama, M.; Motoyama, Y.; Nishiyama, H. Tetrahedron Lett. 2007, 48, 3397. |
[39] | Bolliger, J. L.; Blacque, O.; Frech, C. M. Angew. Chem., nt. Ed. 2007, 46, 6514. |
[40] | Sau, S. C.; Santra, S.; Sen, T. K.; Mandal, S. K.; Koley, D. Chem. Commun. 2012, 48, 555. |
[41] | (a) Mondal, T.; De, S.; Maity, B.; Koley, D. Chem.-Eur. J. 2016, 22, 15778. |
[41] | (b) Mondal, T.; De, S.; Dutta, S.; Koley, D. Chem.-Eur. J. 2018, 24, 6155. |
[42] | Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461. |
[43] | Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, 6985. |
[44] | Nunes, C. M.; Monteiro, A. L. J. Brazil. Chem. Soc. 2007, 18, 1443. |
[45] | Yunker, L. P. E.; Ahmadi, Z.; Logan, J. R.; Wu, W.; Li, T.; Martindale, A.; Oliver, A. G.; McIndoe, J. S. Organometallics 2018, 37, 4297. |
[46] | Vikse, K. L.; Woods, M. P.; McIndoe, J. S. Organometallics 2010, 29, 6615. |
[47] | Sicre, C.; Braga, A. A. C.; Maseras, F.; Cid, M. M. Tetrahedron 2008, 64, 7437. |
[48] | Thomas, A. A.; Denmark, S. E. Science 2016, 352, 329. |
[49] | McGarrity, J. F.; Prodolliet, J. J. Org. Chem. 1984, 49, 4465. |
[50] | Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem., nt. Ed. 2013, 52, 7362. |
[51] | Amatore, C.; Jutand, A.; Le Duc, G. Chem.-Eur. J. 2011, 17, 2492. |
[52] | Amatore, C.; Jutand, A.; Le Duc, G. Angew. Chem., nt. Ed. 2012, 51, 1379. |
[53] | Amatore, C.; Jutand, A.; Le Duc, G. Chem.-Eur. J. 2012, 18, 6616. |
[54] | Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116. |
[55] | Schmidt, A. F.; Kurokhtina, A. A.; Larina, E. V. Russ. J. Gen. Chem. 2011, 81, 1573. |
[56] | (a) Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. J. Mol. Catal. A: Chem. 2010, 324, 39. |
[56] | (b) Kozuch, S.; Martin, J. M. L. ACS Catal. 2011, 1, 246. |
[56] | (c) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 9298. |
[56] | (d) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Lledós, A.; Maseras, F. J. Organomet. Chem. 2006, 691, 4459. |
[57] | Thomas, A. A.; Wang, H.; Zahrt, A. F.; Denmark, S. E. J. Am. Chem. Soc. 2017, 139, 3805. |
[58] | Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 4401. |
[59] | Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398. |
[60] | (a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 1998, 120, 2843. |
[60] | (b) Osakada, K.; Onodera, H.; Nishihara, Y. Organometallics 2005, 24, 190. |
[61] | (a) Ozawa, F.; Kurihara, K.; Fujimori, M.; Hidaka, T.; Toyoshima, T.; Yamamoto, A. Organometallics 1989, 8, 180. |
[61] | (b) Nakazawa, H.; Ozawa, F.; Yamamoto, A. Organometallics 1983, 2, 241. |
[62] | Nishihara, Y.; Onodera, H.; Osakada, K. Chem. Commun. 2004, 192. |
[63] | Amatore, C.; Le Duc, G.; Jutand, A. Chem.-Eur. J. 2013, 19, 10082. |
[64] | (a) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936. |
[64] | (b) Pérez-Rodríguez, M.; Braga, A. A. C.; Garcia-Melchor, M.; Pérez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.; Álvarez, R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650. |
[64] | (c) Pérez-Rodríguez, M.; Braga, A. A. C.; de Lera, A. R.; Maseras, F.; Álvarez, R.; Espinet, P. Organometallics 2010, 29, 4983. |
[65] | Melvin, P. R.; Nova, A.; Balcells, D.; Hazari, N.; Tilset, M. Organometallics 2017, 36, 3664. |
[66] | (a) Jedinák, L.; Zátopková, R.; Zemánková, H.; Šustková, A.; Cankař, P. J. Org. Chem. 2017, 82, 157. |
[66] | (b) Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. J. Am. Chem. Soc. 2014, 136, 7300. |
[67] | Zhang, Y.-T.; Cao, M.-N.; Ge, G.-Q.; Xiang, C.-Y.; Song, Z.-J.; Ma, X.-J.; Fang, S.; Lei, Q.-F.; Fang, W.-J.; Xie, H.-J. Sci. Sin. Chim. 2019, 49, 380. (in Chinese). |
[67] | ( 章雨桐, 曹梦娜, 戈光琼, 项楚越, 宋志军, 马香娟, 房升, 雷群芳, 方文军, 谢湖均, 中国科学: 化学, 2019, 49, 380.) |
[68] | Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133. |
[69] | Astruc, D. Inorg. Chem. 2007, 46, 1884. |
[70] | Sun, B.; Ning, L.; Zeng, H. C. J. Am. Chem. Soc. 2020, 142, 13823. |
[71] | (a) Beletskaya, I. P.; Alonso, F.; Tyurin, V. Coord. Chem. Rev. 2019, 385, 137. |
[71] | (b) Chen, G.-J.; Du, J.-S. Chin. J. Org. Chem. 2014, 34, 65. (in Chinese). |
[71] | ( 陈国军, 杜建时, 有机化学, 2014, 34, 65.) |
[71] | (c) He, S.-J.; Pi, J.-J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica 2018, 76, 956. (in Chinese). |
[71] | ( 何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76, 956.) |
[72] | He, Z.; Song, F.; Sun, H.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 2693. |
[73] | (a) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75. |
[73] | (b) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089. |
[73] | (c) Xu, Z.-Y.; Yu, H.-Z.; Fu, Y. Chem.-Asian J. 2017, 12, 1765. |
[73] | (d) Li, G.; Lei, P.; Szostak, M.; Casals-Cruañas, E.; Poater, A.; Cavallo, L.; Nolan, S. P. ChemCatChem 2018, 10, 3096. |
[74] | Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311. |
[75] | (a) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468. |
[75] | (b) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422. |
[75] | (c) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815. |
[76] | Liu, L. L.; Zhang, S.; Chen, H.; Lv, Y.; Zhu, J.; Zhao, Y. Chem.- Asian J. 2013, 8, 2592. |
[77] | (a) Dong, L.; Wen, J.; Qin, S.; Yang, N.; Yang, H.; Su, Z.; Yu, X.; Hu, C. ACS Catal. 2012, 2, 1829. |
[77] | (b) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem., nt. Ed. 2008, 47, 8897. |
[77] | (c) Wen, J.; Qin, S.; Ma, L.-F.; Dong, L.; Zhang, J.; Liu, S.-S.; Duan, Y.-S.; Chen, S.-Y.; Hu, C.-W.; Yu, X.-Q. Org. Lett. 2010, 12, 2694. |
[78] | Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 2013, 443. |
[79] | Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Nature 2018, 563, 100. |
[80] | Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. J. Am. Chem. Soc. 2017, 139, 12418. |
[81] | Reina, A.; Krachko, T.; Onida, K.; Bouyssi, D.; Jeanneau, E.; Monteiro, N.; Amgoune, A. ACS Catal. 2020, 10, 2189. |
[82] | Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877. |
[83] | Riss, A.; Paz, A. P.; Wickenburg, S.; Tsai, H.-Z.; De Oteyza, D. G.; Bradley, A. J.; Ugeda, M. M.; Gorman, P.; Jung, H. S.; Crommie, M. F.; Rubio, A.; Fischer, F. R. Nat. Chem. 2016, 8, 678. |
[84] | (a) Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D.; Guo, X. Sci. Adv. 2018, 4, eaar2177. |
[84] | (b) Yang, C.; Liu, Z.; Li, Y.; Zhou, S.; Lu, C.; Guo, Y.; Ramirez, M.; Zhang, Q.; Li, Y.; Liu, Z.; Houk, K. N.; Zhang, D.; Guo, X. Sci. Adv. 2021, 7, eabf0689. |
/
〈 |
|
〉 |