ARTICLES

Site-Selective C—H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent

  • Tao Zhang ,
  • Shangda Li ,
  • Chunlin Zhou ,
  • Xinchao Wang ,
  • Meng Zhang ,
  • Zezhong Gao ,
  • Gang Li
Expand
  • a School of Science, North University of China, Taiyuan, Shanxi 030051
    b Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
* Corresponding authors. E-mail: ;

Received date: 2021-06-06

  Revised date: 2021-06-07

  Online published: 2021-06-07

Supported by

National Natural Science Foundation of China(22022111); National Natural Science Foundation of China(22071248); Natural Science Foundation of Fujian Province(2020J02008); Natural Science Foundation of Fujian Province(2020J01108); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020306)

Abstract

Site-selective C—H iodination of electron-rich phenols is a challenging reaction. A Pd(II)-catalyzed C—H iodination of free 2-aryl phenols and 2-phenoxyacetic acids using 4-iodo-3-nitroanisole as the mild iodinating reagent was reported. Excellent site-selectivity and good functional group tolerance were obtained with a range of electron rich phenol derivatives. These results suggest that C—H iodination via formal metathesis is a potentially useful method for C—H iodination of challenging substrates.

Cite this article

Tao Zhang , Shangda Li , Chunlin Zhou , Xinchao Wang , Meng Zhang , Zezhong Gao , Gang Li . Site-Selective C—H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent[J]. Chinese Journal of Organic Chemistry, 2021 , 41(9) : 3511 -3520 . DOI: 10.6023/cjoc202106011

References

[1]
(a) Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Chem. Rev. 2011, 111, 563.
[1]
(b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
[1]
(c) Qin, L.; Ren, L.; Wan, S.; Liu, G.; Luo, X.; Liu, Z.; Li, F.; Yu, Y.; Liu, J.; Wei, Y. J. Med. Chem. 2017, 60, 3606.
[2]
Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6, 2297.
[3]
(a) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (in Chinese).
[3]
( 廖港, 史炳锋, 化学学报, 2015, 73, 1283.)
[3]
(b) Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
[3]
(c) Luo, J.; Xu, X.; Zhao, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 2873. (in Chinese).
[3]
( 骆钧飞, 徐星, 赵延超, 梁洪泽, 有机化学, 2017, 37, 2873.)
[3]
(d) Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524.
[4]
(a) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., nt. Ed. 2005, 44, 2112.
[4]
(b) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416.
[4]
(c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523.
[4]
(d) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., nt. Ed. 2008, 47, 5215.
[4]
(e) Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298.
[4]
(f) Wang, X.-C.; Hu, Y.; Bonacorsi, S.; Hong, Y.; Burrell, R.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 10326.
[4]
(g) Urones, B.; Martínez, Á. M.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Commun. 2013, 49, 11044.
[4]
(h) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451.
[4]
(i) Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.
[4]
(j) Lu, C.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Tetrahedron 2014, 70, 4197.
[4]
(k) Aihara, Y.; Chatani, N. ACS Catal. 2016, 6, 4323.
[4]
(l) Zhan, B.-B.; Liu, Y.-H.; Hu, F.; Shi, B.-F. Chem. Commun. 2016, 52, 4934.
[4]
(i) Fan, X.-M.; Guo, Y.; Li, Y.-D.; Yu, K.-K.; Liu, H.-W.; Liao, D.-H.; Ji, Y.-F. Asian J. Org. Chem. 2016, 5, 499.
[4]
(m) Li, J.; Cong, W.; Gao, Z.; Zhang, J.; Yang, H.; Jiang, G. Org. Biomol. Chem. 2018, 16, 3479.
[4]
(n) Schreib, B. S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 8758.
[5]
Sun, X.; Yao, X.; Zhang, C.; Rao, Y. Chem. Commun. 2015, 51, 10014.
[6]
(a) Youn, S. W.; Cho, C. G. Org. Biomol. Chem. 2021, DOI: 10. 1039/d1ob00506e.
[6]
(b) Xu, X.; Luo, J. ChemSusChem 2019, 12, 4601.
[7]
(a) Bedford, R. B.; Engelhart, J. U.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Dalton Trans. 2010, 39, 10464.
[7]
(b) John, A.; Nicholas, K. M. J. Org. Chem. 2012, 77, 5600.
[7]
(c) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262.
[8]
(a) Bhawal, B. N.; Morandi, B. Angew. Chem., nt. Ed. 2019, 58, 10074.
[8]
(b) Yu, B.; Zou, S.; Liu, H.; Huang, H. J. Am. Chem. Soc. 2020, 142, 18341.
[8]
(c) Yu, B.; Zou, S.; Huang, H. J. Org. Chem. 2021, 86, 7849.
[8]
(d) Rochette, E.; Desrosiers, V.; Soltani, Y.; Fontaine, F. G. J. Am. Chem. Soc. 2019, 141, 12305.
[8]
(e) Baba, K.; Tobisu, M.; Chatani, N. Angew. Chem., nt. Ed. 2013, 52, 11892.
[8]
(f) Shao, Y.; Zhang, F.; Zhang, J.; Zhou, X. Angew. Chem., nt. Ed. 2016, 55, 11485.
[8]
(g) Fan, C.; Lv, X.-Y.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2019, 141, 2889.
[9]
Li, S.; Zhang, C.; Fu, L.; Wang, H.; Cai, L.; Chen, X.; Wang, X.; Li, G. CCS Chem. 2021, DOI: 10.31635/ccschem.021.202101156.
[10]
(a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., nt. Ed. 1997, 36, 1740.
[10]
(b) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250.
[10]
(c) Luo, S.; Luo, F.-X.; Zhang, X.-S.; Shi, Z.-J. Angew. Chem., nt. Ed. 2013, 52, 10598.
[10]
(d) Inamoto, K.; Kadokawa, J.; Kondo, Y. Org. Lett. 2013, 15, 3962.
[10]
(e) Zhang, C.; Ji, J.; Sun, P. J. Org. Chem. 2014, 79, 3200.
[10]
(f) Duan, S.; Xu, Y.; Zhang, X.; Fan, X. Chem. Commun. 2016, 52, 10529.
[10]
(g) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.-Q.; Zhou, L.-P.; Yuan, D.; Sun, Q.-F.; Li, G. Nat. Catal. 2018, 1, 469.
[10]
(h) Kumar, D. R.; Gopi Krishna Reddy, A.; Satyanarayana, G. Eur. J. Org. Chem. 2019, 2019, 2472.
[11]
(a) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504.
[11]
(b) Schmidt, B.; Riemer, M. J. Heterocycl. Chem. 2017, 54, 1287.
[12]
(a) Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480.
[12]
(b) Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114.
[12]
(c) Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
[13]
Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Nature 2017, 551, 489.
[14]
(a) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.
[14]
(b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.
[14]
(c) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.
[14]
(d) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840.
[15]
(a) Xiao, Y.; Xu, Y.; Cheon, H.; Chae, J. J. Org. Chem. 2013, 78, 5804.
[15]
(b) He, X.; Yu, Z.; Jiang, S.; Zhang, P.; Shang, Z.; Lou, Y.; Wu, J. Bioorg. Med. Chem. 2015, 25, 5601.
[15]
(c) Okaecwe, T.; Swanepoel, A.; Petzer, A.; Bergh, J.; Petzer, J. Bioorg. Med. Chem. 2012, 20, 4336.
[16]
Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., n. Ed. 2010, 49, 8729.
Outlines

/