ARTICLES

Divergent Synthesis of Ketone-Fused Indoles/Pyrroles via Metal-Guided Friedel-Crafts Cyclization

  • Hejiang Luo ,
  • Tongxiang Cao ,
  • Shifa Zhu
Expand
  • a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640
    b China-Singapore International Joint Research Institute, Guangzhou 510555
* Corresponding authors. E-mail: ;

Received date: 2021-05-11

  Revised date: 2021-06-03

  Online published: 2021-06-08

Supported by

Ministry of Science and Technology of the People's Republic of China(2016YFA0602900); National Natural Science Foundation of China(21871096); National Natural Science Foundation of China(22071062); National Natural Science Foundation of China(22001077); Guangdong Provincal Science and Technology Fund(2018B030308007); Guangdong Provincal Science and Technology Fund(2018A030310359); Guangdong Provincal Science and Technology Fund(2021A1515012331); China Postdoctoral Science Foundation(2018M643062); China Postdoctoral Science Foundation(2019T120723)

Abstract

A metal-guided method for divergent synthesis of ketone-fused indoles/pyrroles from N-(2-alkynylaryl) lactam is described. The reaction is proposed to proceed through a regioswitchable Friedel-Crafts cyclization of acylium. The obvious advantages are wide substrate scopes, high atom economy and step economy, which have a great potential in the synthesis of structure-related bioactive compounds.

Cite this article

Hejiang Luo , Tongxiang Cao , Shifa Zhu . Divergent Synthesis of Ketone-Fused Indoles/Pyrroles via Metal-Guided Friedel-Crafts Cyclization[J]. Chinese Journal of Organic Chemistry, 2021 , 41(9) : 3521 -3531 . DOI: 10.6023/cjoc202105021

References

[1]
(a) Michael, J. P. The Alkaloids: Chemistry and Biology 2001, 55, 91.
[1]
(b) Michael, J. P. The Alkaloids: Chemistry and Biology 2016, 75, 1.
[2]
Estévez, V.; Villacampa, M.; Menéndez, J. C. Chem. Soc. Rev. 2014, 43, 4633.
[3]
Huckaba, A. J.; Giordano, F.; McNamara, L. E.; Dreux, K. M.; Hammer, N. I.; Tschumper, G. S.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K.; Delcamp, J. H. Adv. Energy Mater. 2015, 5, 1401629.
[4]
(a) Lee, C.; Sohn, J. H.; Jang, J.-H.; Ahn, J. S.; Oh, H.; Baltrusaitis, J.; Hwang, I. H.; Gloer, J. B. J. Antibiot. 2015, 68, 715.
[4]
(b) van Wijngaarden, I.; Hamminga, D.; van Hes, R.; Standaar, P. J.; Tipker, J.; Tulp, M. T. M.; Mol, F.; Olivier, B.; de Jonge, A. J. Med. Chem. 1993, 36, 3693.
[4]
(c) Dinsmore, A.; Mandy, K.; Michael, J. P. Org. Biomol. Chem. 2006, 4, 1032.
[4]
(d) Sun, L.-R.; Li, X.; Wang, S.-X. J. Asian Nat. Prod. Res. 2005, 7, 127.
[5]
(a) Johnson, T. O.; Ermolieff, J.; Jirousek, M. R. Nat. Rev. Drug Discov. 2002, 1, 696.
[5]
(b) Vintonyak, V. V.; Antonchick, A. P.; Rauh, D.; Waldmann, H. Curr. Opin. Chem. Biol. 2009, 13, 272.
[6]
(a) Peat, A. J.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 1028.
[6]
(b) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 5918.
[6]
(c) Kato, K.; Ono, M.; Akita, H. Tetrahedron 2001, 57, 10055.
[6]
(d) Yadav, A. K.; Peruncheralathan, S.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1388.
[6]
(e) Takaya, J.; Udagawa, S.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4906.
[6]
(f) Stoffman, E. J. L.; Clive, D. L. J. Tetrahedron 2010, 66, 4452.
[6]
(g) Allan, K. M.; Kobayashi, K.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 1392.
[6]
(h) Quasdorf, K. W.; Huters, A. D.; Lodewyk, M. W.; Tantillo, D. J.; Garg, N. K. J. Am. Chem. Soc. 2012, 134, 1396.
[6]
(i) Umezaki, S.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2013, 15, 4230.
[6]
(j) Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550.
[6]
(k) Layek, M.; Reddy M, A.; Dhanunjaya Rao, A. V.; Alvala, M.; Arunasree, M. K.; Islam, A.; Mukkanti, K.; Iqbal, J.; Pal, M. Org. Biomol. Chem. 2011, 9, 1004.
[6]
(l) Ni, Q.; Zhang, H.; Grossmann, A.; Loh, C. C. J.; Merkens, C.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 13562.
[6]
(m) Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett. 2016, 18, 5098.
[6]
(n) Li, W.; Dong, Z.; Zhang, Y.; Zeng, Z.; Usman, M.; Liu, W.-B. J. Org. Chem. 2019, 84, 7995.
[6]
(o) Dong, Z.; Zhang, X.-W.; Li, W.; Li, Z.-M.; Wang, W.-Y.; Zhang, Y.; Liu, W.; Liu, W.-B. Org. Lett. 2019, 21, 1082.
[6]
(p) Yang, X.; Luo, G.; Zhou, L.; Liu, B.; Zhang, X.; Gao, H.; Jin, Z.; Chi, Y. R. ACS Catal. 2019, 9, 10971.
[6]
(q) Harada, S.; Yanagawa, M.; Nemoto, T. ACS Catal. 2020, 10, 11971.
[6]
(r) Occhiato, E. G.; Prandi, C.; Ferrali, A.; Guarna, A. J. Org. Chem. 2005, 70, 4542.
[6]
(s) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
[6]
(t) Lu, S.-C.; Wang, W.-X.; Gao, P.-L.; Zhang, W.; Tu, Z.-F. Org. Biomol. Chem. 2012, 10, 232.
[6]
(u) Jiang, B.; Li, Y.; Tu, M.-S.; Wang, S.-L.; Tu, S.-J.; Li, G. J. Org. Chem. 2012, 77, 7497.
[6]
(v) Jiang, B.; Li, Q.-Y.; Zhang, H.; Tu, S.-J.; Pindi, S.; Li, G. Org. Lett. 2012, 14, 700.
[6]
(w) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 11712.
[6]
(x) Zheng, Z.; Tu, H.; Zhang, L. Chem. Eur. J. 2014, 20, 2445.
[6]
(y) Chen, J.; Chang, D.; Xiao, F.; Deng, G.-J. J. Org. Chem. 2019, 84, 568.
[6]
(z) Li, W.; Usman, M.; Wu, L.-Y.; Liu, W.-B. J. Org. Chem. 2019, 84, 15754.
[6]
(aa) Sun, K.; Lei, J.; Liu, Y.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709.
[6]
(ab) Xu, X.; Chen, J.; Ke, J.; Zhang, K.; Wu, P.; Wang, S. Chin. J. Org. Chem. 2021, 41, 206. (in Chinese).
[6]
( 徐学涛, 陈洁, 柯俊杰, 张焜, 吴盼盼, 王少华, 有机化学, 2021, 41, 206.)
[6]
(ac) Du, Y.; Xiao, Y.; Tian, F.; Han, L.; Gu, Y.; Zhu, N. Chin. J. Org. Chem. 2021, 41, 521. (in Chinese).
[6]
( 杜玉英, 肖业元, 田福利, 韩利民, 顾彦龙, 竺宁, 有机化学, 2021, 41, 521.)
[6]
(ad) Zhou, B.; Liang, R.; Cao, Z.; Zhou, P.; Jia, Y. Acta Chim. Sinica 2021, 79, 176. (in Chinese).
[6]
( 周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.)
[6]
(ae) Liu, Y.-H.; Song, H.; Zhang, C.; Liu, Y.-J.; Shi, B.-F. Chin. J. Chem. 2020, 38, 1545.
[7]
(a) Li, G.; Huang, X.; Zhang, L. Angew. Chem., Int. Ed. 2008, 47, 346.
[7]
(b) Peng, Y.; Yu, M.; Zhang, L. Org. Lett. 2008, 10, 5187.
[8]
(a) Liu, L.; Wang, Y.; Zhang, L. Org. Lett. 2012, 14, 3736.
[8]
(b) Zheng, Z.; Touve, M.; Barnes, J.; Reich, N.; Zhang, L. Angew. Chem., Int. Ed. 2014, 53, 9302.
[9]
(a) Zhang, C.; Jiang, H.; Zhu, S. Chem. Commun. 2017, 53, 2677.
[9]
(b) Zhu, S.; Zhang, Z.; Huang, X.; Jiang, H.; Guo, Z. Chem.-Eur. J. 2013, 19, 4695.
[9]
(c) Luo, K.; Cao, T.; Jiang, H.; Chen, L.; Zhu, S. Org. Lett. 2017, 19, 5856.
[9]
(d) Luo, H.; Liang, R.; Chen, L.; Jiang, H.; Zhu, S. Org. Chem. Front. 2018, 5, 1160.
[9]
(e) Cao, T.; Chen, L.; Zhu, S. Org. Lett. 2019, 21, 90.
[9]
(f) Luo, H.; He, C.; Jiang, H.; Jiang, Zhu, S. Chin. J. Chem. 2020, 38, 1052.
[9]
(g) Zhang, L.; Shi, Q.; Cao, T.; Zhu, S. Chem. Commun. 2020, 56, 9533.
[9]
(h) Guan, Z.; Zhu, H. Chin. J. Org. Chem. 2020, 40, 1398. (in Chinese).
[9]
( 关正辉, 祝海涛, 有机化学, 2020, 40, 1398.)
[9]
(i) Zhang, Z.; Jiao, N. Chin. J. Org. Chem. 2020, 40, 1790. (in Chinese).
[9]
( 张梓曜, 焦宁, 有机化学, 2020, 40, 1790.)
[9]
(j) Liu, X.; Xu, X.; Hu, W. Chin. J. Org. Chem. 2020, 40, 4370. (in Chinese).
[9]
( 刘向荣, 徐新芳, 胡文浩, 有机化学, 2020, 40, 4370.)
[10]
Tikhe, J. G.; Webber, S. E.; Hostomsky, Z.; Maegley, K. A.; Ekkers, A.; Li, J.; Yu, X.-H.; Almassy, R. J.; Kumpf, R. A.; Boritzki, T. J.; Zhang, C.; Calabrese, C. R.; Curtin, N. J.; Kyle, S.; Thomas, H. D.; Wang, L.-Z.; Calvert, A. H.; Golding, B. T.; Griffin, R. J.; Newell, D. R. J. Med. Chem. 2004, 47, 5467.
Outlines

/