ARTICLES

Synthesis and Structure of 4'-CF3-Uridine Modified Oligoribonucleotides

  • Fengmin Guo ,
  • Marko Trajkovski ,
  • Qiang Li ,
  • Janez Plavec ,
  • Zhen Xi ,
  • Chuanzheng Zhou
Expand
  • a State Key Laboratory of Elemento-organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071
    b Slovenian NMR Centre, National Institute of Chemistry, University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Hajdrihova 19, Ljubljana 1000, Slovenia
* Corresponding author. E-mail:

Received date: 2021-03-29

  Revised date: 2021-05-08

  Online published: 2021-06-17

Supported by

National Natural Science Foundation of China(21877064); National Natural Science Foundation of China(91953115); Natural Science Foundation of Tianjin City(20JCZDJC00830)

Abstract

The synthesis and structure of 4'-CF3-uridine modified ribonucleotides are reported. Active 4'-CF3-uridine (4'-TfMU) phosphoramidite was prepared and successfully incorporated into oligonucleotides based on solid-supported synthesis. Molecular dynamics simulations and NMR studies of the 4'-TfMU modified oligonucleotides revealed that the ribose of 4'-TfMU was constrained in the South conformation, which was corroborated by the biochemical properties of the 4'-TfMU modified oligonucleotide, such as their affinity to complementary strands and transesterification kinetics. The South-constrained conformation, together with the intense 19F NMR signal of the 4'-TfMU makes it an ideal probe for studying the structure and function of RNA.

Cite this article

Fengmin Guo , Marko Trajkovski , Qiang Li , Janez Plavec , Zhen Xi , Chuanzheng Zhou . Synthesis and Structure of 4'-CF3-Uridine Modified Oligoribonucleotides[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 4059 -4065 . DOI: 10.6023/cjoc202103058

References

[1]
(a) Ochoa, S.; Milam, V. T. Molecules 2020, 25, 4659.
[1]
(b) Khvorova, A.; Watts, J. K. Nat. Biotechnol. 2017, 35, 238.
[1]
(c) Morihiro, K.; Kasahara, Y.; Obika, S. Mol. Biosyst. 2017, 13, 235.
[2]
(a) Thibaudeau, C.; Plavec, J.; Chattopadhyaya, J. In Stereoelectronic Effects in Nucleosides and Nucleotides and Their Structural Implications, 2nd ed., Uppsala University Press, Uppsala, 2005.
[2]
(b) Burai Patrascu, M.; Malek-Adamian, E.; Damha, M. J.; Moitessier, N. J. Am. Chem. Soc. 2017, 139, 13620.
[3]
(a) Allerson, C. R.; Sioufi, N.; Jarres, R.; Prakash, T. P.; Naik, N.; Berdeja, A.; Wanders, L.; Griffey, R. H.; Swayze, E. E.; Bhat, B. J. Med. Chem. 2005, 48, 901.
[3]
(b) Patra, A.; Paolillo, M.; Charisse, K.; Manoharan, M.; Rozners, E.; Egli, M. Angew. Chem., Int. Ed. 2012, 51, 11863.
[4]
(a) Damha, M. J.; Wilds, C. J.; Noronha, A.; Brukner, I.; Borkow, G.; Arion, D.; Parniak, M. A. J. Am. Chem. Soc. 1998, 120, 12976.
[4]
(b) Dowler, T.; Bergeron, D.; Tedeschi, A. L.; Paquet, L.; Ferrari, N.; Damha, M. J. Nucleic Acids Res. 2006, 34, 1669.
[5]
Darré, L.; Ivani, I.; Dans, P. D.; Gómez, H.; Hospital, A.; Orozco, M. J. Am. Chem. Soc. 2016, 138, 16355.
[6]
Betson, M.; Allanson, N.; Wainwright, P. Org. Biomol. Chem. 2014, 12, 9291.
[7]
(a) Martinez-Montero, S.; Deleavey, G. F.; Kulkarni, A.; Martin-Pintado, N.; Lindovska, P.; Thomson, M.; Gonzalez, C.; Goette, M.; Damha, M. J. J. Org. Chem. 2014, 79, 5627.
[7]
(b) Malek-Adamian, E.; Guenther, D. C.; Matsuda, S.; Martínez-Montero, S.; Zlatev, I.; Harp, J.; Burai Patrascu, M.; Foster, D. J.; Fakhoury, J.; Perkins, L.; Moitessier, N.; Manoharan, R. M.; Taneja, N.; Bisbe, A.; Charisse, K.; Maier, M.; Rajeev, K. G.; Egli, M.; Manoharan, M.; Damha, M. J. J. Am. Chem. Soc. 2017, 139, 14542.
[7]
(c) Malek-Adamian, E.; Fakhoury, J.; Arnold, A. E.; Martinez- Montero, S.; Shoichet, M. S.; Damha, M. J. Nucleic Acid Ther. 2019, 29, 187.
[8]
(a) Guo, F. M.; Yue, Z. K.; Trajkovski, M.; Zhou, X. P.; Cao, D.; Li, Q.; Wang, B. F.; Wen, X.; Plavec, J.; Peng, Q.; Xi, Z.; Zhou, C. Z. J. Am. Chem. Soc. 2018, 140, 11893.
[8]
(b) Li, Q.; Chen, J. L.; Trajkovski, M.; Zhou, Y. F.; Fan, C. C.; Lu, K.; Tang, P. P.; Su, X. C.; Plavec, J.; Xi, Z.; Zhou, C. Z. J. Am. Chem. Soc. 2020, 142, 4739.
[8]
(c) Zhou, Y. F.; Zang, C. L.; Wang, H. W.; Li, J. J.; Cui, Z. H.; Li, Q.; Guo, F. M.; Yan, Z. G.; Wen, X.; Xi, Z.; Zhou, C. Z. Org. Biomol. Chem. 2019, 17, 5550.
[9]
Kozak, J.; Johnson, C. R. Nucleosides Nucleotides 1998, 17, 2221.
[10]
Pitsch, S.; Weiss, P. A.; Jenny, L.; Stutz, A.; Wu, X. Helv. Chim. Acta 2001, 84, 3773.
[11]
Dahl, B. H.; Nielsen, J.; Dahl, O. Nucleic Acids Res. 1987, 15, 1729.
[12]
Guo, F. M.; Li, Q.; Zhou, C. Z. Org. Biomol. Chem. 2017, 15, 9552.
Outlines

/