REVIEWS

Synthesis of Aryl or Heteroaryl C-Nucleosides by Direct Coupling of a Carbohydrate Moiety with a Preformed Aglycon Unit

  • Feifan Li ,
  • Jin Qu
Expand
  • State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-04-16

  Revised date: 2021-05-12

  Online published: 2021-06-17

Supported by

National Natural Science Foundation of China(21772105)

Abstract

C-Nucleosides have similar structure compared to native N-nucleosides, while the carbohydrate unit and the base in a C-nucleoside are connected through a carbon-carbon bond. Because they can also be recognized and utilized by enzymes associated with N-nucleosides in cells, C-nucleosides can inhibit enzyme-catalyzed synthesis or degradation of nucleic acids, thereby inhibiting the proliferation of viruses or cancer cells. C-Nucleoside synthesis has drawn much attention since the clinical application of the C-nucleoside drug remdesivir for the treatment of COVID-19. The direct coupling of a carbohydrate moiety with a preformed aglycon unit is an efficient synthetic approach to construct aryl or heteroaryl C-nucleoside. The synthetic methods of aryl or heteroaryl C-nucleosides in recent years are summarized from three main synthetic strategies: coupling of ribose derivatives with organometallic reagents, transition metal-catalyzed coupling of ribose derivatives with organometallic reagents, and acid-catalyzed Friedel-Crafts reaction of ribose derivatives. Each synthetic strategy is categorized in terms of sugar donor precursors, including hemiacetal riboses, ribonolactones, ribofuranosyl halides, glycal, and others. The mechanism of α or β product formation in these reactions are explained in detail as well.

Cite this article

Feifan Li , Jin Qu . Synthesis of Aryl or Heteroaryl C-Nucleosides by Direct Coupling of a Carbohydrate Moiety with a Preformed Aglycon Unit[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3948 -3964 . DOI: 10.6023/cjoc202104032

References

[1]
Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729.
[2]
De Clercq, E. J. Med. Chem. 2016, 59, 2301.
[3]
Townsend, L. B. Chemistry of Nucleosides and Nucleotides, Plenum Press, New York, 1994, pp. 421-535.
[4]
(a) Arnez, J. G.; Steitz, T. A. Biochemistry 1994, 33, 7560.
[4]
(b) Davis, D. R.; Veltri, C. A.; Nielsen, L. J. Biomol. Struct. Dyn. 1998, 15, 1121.
[4]
(c) Harrington, K. M.; Nazarenko, I. A.; Dix, D. B.; Thompson, R. C.; Uhlenbeck, O. C. Biochemistry 1993, 32, 7617.
[5]
Nishimura, H.; Mayama, M.; Komatsu, Y.; Shimaoka, N.; Tanaka, Y.; Kato, H. J. Antibiot. 1964, 17, 148.
[6]
Koyama, G.; Maeda, K.; Umezawa, H.; Iitaka, Y. Terahedron Lett. 1966, 7, 597.
[7]
Kusakabe, Y.; Nagatsu, J.; Shibuya, M.; Kawaguchi, O.; Hirose, C.; Shirato, S. J. Antibiot. 1972, 25, 44.
[8]
Gutowski, G. E.; Sweeney, M. J.; DeLong, D. C.; Hamill, R. L.; Gerzon, K.; Dyke, R. W. Ann. N. Y. Acad. Sci. 1975, 255, 544.
[9]
(a) Robins, R. K.; Srivastava, P. C.; Narayanan, V. L.; Plowman, J.; Paull, K. D. J. Med. Chem. 1982, 25, 107.
[9]
(b) Cooney, D. A.; Jayaram, H. N.; Gebeyehu, G.; Betts, C. R.; Kelley, J. A.; Marquez, V. E.; Johns, D. G. Biochem. Pharmacol. 1982, 31, 2133.
[9]
(c) Jayaram, H. N.; Cooney, D. A.; Glazer, R. I.; Dion, R. L.; Johns, D. G. Biochem. Pharmacol. 1982, 31, 2557.
[9]
(d) Jayaram, H. N.; Dion, R. L.; Glazer, R. I.; Johns, D. G.; Robins, R. K.; Srivastava, P. C.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 2371.
[9]
(e) Jayaram, H. N.; Smith, A. L.; Glazer, R. I.; Johns, D. G.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 3839.
[10]
Li, G.; De Clercq, E. Nat. Rev. Drug Discovery 2020, 19, 149.
[11]
Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S.-S.; Fearns, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Nature 2016, 531, 381.
[12]
(a) Warren, T. K.; Wells, J.; Panchal, R. G.; Stuthman, K. S.; Garza, N. L.; Van Tongeren, S. A.; Dong, L.; Retterer, C. J.; Eaton, B. P.; Pegoraro, G.; Honnold, S.; Bantia, S.; Kotian, P.; Chen, X.; Taubenheim, B. R.; Welch, L. S.; Minning, D. M.; Babu, Y. S.; Sheridan, W. P.; Bavari, S. Nature 2014, 508, 402.
[12]
(b) Taylor, R.; Kotian, P.; Warren, T.; Panchal, R.; Bavari, S.; Julander, J.; Dobo, S.; Rose, A.; El-Kattan, Y.; Taubenheim, B.; Babu, Y.; Sheridan, W. P. J. Infect. Public Heal. 2016, 9, 220.
[13]
Julander, J. G.; Bantia, S.; Taubenheim, B. R.; Minning, D. M.; Kotian, P.; Morrey, J. D.; Smee, D. F.; Sheridan, W. P.; Babu, Y. S. Antimicrob. Agents Chemother. 2014, 58, 6607.
[14]
Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V. K.; Smith, D. B.; Jekle, A.; Kinkade, A.; Symons, J. A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chanda, S.; Blatt, L.; Beigelman, L. J. Med. Chem. 2016, 59, 4611.
[15]
Wu, Q.; Simons, C. Synthesis 2004, 1533.
[16]
Adamo, M. F. A.; Pergoli, R. Curr. Org. Chem. 2008, 12, 1544.
[17]
Brown, D. M.; Ogden, R. C. J. Chem. Soc., Perkin Trans. 1 1981, 723.
[18]
Krohn, K.; Heins, H.; Wielckens, K. J. Med. Chem. 1992, 35, 511.
[19]
Harusawa, S.; Matsuda, C.; Araki, L.; Kurihara, T. Synthesis 2006, 793.
[20]
Solomon, M. S.; Hopkins, P. B. Tetrahedron Lett. 1991, 32, 3297.
[21]
Spadafora, M.; Burger, A.; Benhida, R. Synlett 2008, 1225.
[22]
Peyron, C.; Benhida, R. Synlett 2009, 472.
[23]
Piccirilli, J. A.; Krauch, T.; Macpherson, L. J.; Benner, S. A. Helv. Chim. Acta 1991, 74, 397.
[24]
Kim, T. W.; Kool, E. T. Org. Lett. 2004, 6, 3949.
[25]
van Rijssel, E. R.; van Delft, P.; Lodder, G.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; Codée, J. D. C. Angew. Chem., Int. Ed. 2014, 53, 10381.
[26]
van Rijssel, E. R.; van Delft, P.; van Marle, D. V.; Bijvoets, S. M.; Lodder, G.; Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V.; Codée, J. D. C. J. Org. Chem. 2015, 80, 4553.
[27]
Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Smith, D. M.; Woerpel, K. A. J. Am. Chem. Soc. 2005, 127, 10879.
[28]
Štefko, M.; Slavětínská, L.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2011, 76, 6619.
[29]
Asbun, W.; Binkley, S. B. J. Org. Chem. 1968, 31, 140.
[30]
Enders, D.; Hieronymi, A.; Ridder, A. Synlett 2005, 2391.
[31]
Guianvarc'h, D.; Fourrey, J. L.; Huu Dau, M. T.; Guérineau, V.; Benhida, R. J. Org. Chem. 2002, 67, 3724.
[32]
Cho, A.; Saunders, O. L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J. E.; Feng, J. Y.; Ray, A. S.; Kim, C. U. Bioorg. Med. Chem. Lett. 2012, 22, 2705.
[33]
Metobo, S. E.; Xu, J.; Saunders, O. L.; Butler, T.; Aktoudianakis, E.; Cho, A.; Kim, C. U. Tetrahedron Lett. 2012, 53, 484.
[34]
Chaudhuri, N. C.; Kool, E. T. Tetrahedron Lett. 1995, 36, 1795.
[35]
Shapiro, R.; Chambers, R. W. J. Am. Chem. Soc. 1961, 83, 3920.
[36]
Schweitzer, B. A.; Kool, E. T. J. Org. Chem. 1994, 59, 7238.
[37]
Hocek, M.; Pohl, R.; Klepetářová, B. Eur. J. Org. Chem. 2005, 2005, 4525.
[38]
Joubert, N.; Urban, M.; Pohl, R.; Hocek, M. Synthesis 2008, 1918.
[39]
Weinberger, M.; Wagenknecht, H. A. Synthesis 2012, 44, 648.
[40]
Jiang, Y. L.; Stivers, J. T. Tetrahedron Lett. 2003, 44, 4051.
[41]
Nicolas, L.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. Tetrahedron Lett. 2014, 55, 849.
[42]
Beuck, C.; Singh, I.; Bhattacharya, A.; Hecker, W.; Parmar, V. S.; Seitz, O.; Weinhold, E. Angew. Chem., Int. Ed. 2003, 42, 3958.
[43]
Ren, R. X.-F.; Chaudhuri, N. C.; Paris, P. L.; Rumney, S.; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 7671.
[44]
Hainke, S.; Singh, I.; Hemmings, J.; Seitz, O. J. Org. Chem. 2007, 72, 8811.
[45]
Singh, I.; Seitz, O. Org. Lett. 2006, 8, 4319.
[46]
Hacksell, U.; Daves, G. D. J. Org. Chem. 1983, 48, 2870.
[47]
Cheng, J. C. Y.; Hacksell, U.; Daves, G. D. J. Org. Chem. 1986, 51, 3093.
[48]
Zhang, H. C.; Daves, G. D. J. Org. Chem. 1992, 57, 4690.
[49]
Raboisson, P.; Baurand, A.; Cazenave, J. P.; Gachet, C.; Schultz, D.; Spiess, B.; Bourguignon, J. J. J. Org. Chem. 2002, 67, 8063.
[50]
Lefoix, M.; Mathis, G.; Kleinmann, T.; Truffert, J. C.; Asseline, U. J. Org. Chem. 2014, 79, 3221.
[51]
Joubert, N.; Pohl, R.; Klepetářová, B.; Hocek, M. J. Org. Chem. 2007, 72, 6797.
[52]
Chapuis, H.; Kubelka, T.; Joubert, N.; Pohl, R.; Hocek, M. Eur. J. Org. Chem. 2012, 1759.
[53]
Temburnikar, K.; Brace, K.; Seley-Radtke, K. L. J. Org. Chem. 2013, 78, 7305.
[54]
Gong, H.; Gagné, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
[55]
Nicolas, L.; Izquierdo, E.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. J. Org. Chem. 2013, 78, 11807.
[56]
Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693.
[57]
Wang, Q.; An, S.; Deng, Z.; Zhu, W.; Huang, Z.; He, G.; Chen, G. Nat. Catal. 2019, 2, 793.
[58]
Ma, Y.; Liu, S.; Xi, Y.; Li, H.; Yang, K.; Cheng, Z.; Wang, W.; Zhang, Y. Chem. Commun. 2019, 55, 14657.
[59]
Mukaiyama, T.; Matsubara, K.; Hora, M. Synthesis 1994, 1368.
[60]
Shirakawa, S.; Kobayashi, S. Org. Lett. 2007, 9, 311.
[61]
Sokolova, T. N.; Yartseva, I. V.; Preobrazhenskaya, M. N. Carbohydr. Res. 1981, 93, 19.
[62]
Hainke, S.; Arndt, S.; Seitz, O. Org. Biomol. Chem. 2005, 3, 4233.
[63]
Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N. P.; Hocek, M. J. Org. Chem. 2008, 73, 3798.
[64]
Macdonald, S. J. F.; Huizinga, W. B.; McKenzie, T. C. J. Org. Chem. 1988, 53, 3371.
[65]
Yokoyama, M.; Nomura, M.; Togo, H.; Seki, H. J. Chem. Soc., erkin Trans. 1 1996, 2145.
[66]
Girgis, N. S.; Michael, M. A.; Smee, D. F.; Alaghamandan, H. A.; Robins, R. K.; Cottam, H. B. J. Med. Chem. 1990, 33, 2750.
[67]
Liu, M. C.; Luo, M. Z.; Mozdziesz, D. E.; Sartorelli, A. C. Nucleosides Nucleotides Nucleic Acids 2005, 24, 45.
[68]
Shin, D.; Sinkeldam, R. W.; Tor, Y. J. Am. Chem. Soc. 2011, 133, 14912.
[69]
Spadafora, M.; Mehiri, M.; Burger, A.; Benhida, R. Tetrahedron Lett. 2008, 49, 3967.
[70]
Marzag, H.; Zerhouni, M.; Tachallait, H.; Demange, L.; Robert, G.; Bougrin, K.; Auberger, P.; Benhida, R. Bioorg. Med. Chem. 2018, 28, 1931.
[71]
Tachallait, H.; Filho, M. S.; Marzag, H.; Bougrin, K.; Demange, L.; Martin, A. R.; Benhida, R. New J. Chem. 2019, 43, 5551.
[72]
Hungerford, N. L.; Armitt, D. J.; Banwell, M. G. Synthesis 2003, 1837.
Outlines

/