ARTICLES

Structural Modification of Benzimidazole-Iminosugars and Their Inhibitory Activities against β-Glycosidases

  • Fengxing Li ,
  • Xin Lu ,
  • Xu Liu ,
  • Lulu Su ,
  • Xiaoliu Li ,
  • Hua Chen
Expand
  • Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002
* Corresponding author. E-mail: hua-todd@163.com

Received date: 2021-05-02

  Revised date: 2021-05-31

  Online published: 2021-06-22

Supported by

National Natural Science Foundation of China(21772031); Natural Science Foundation of Hebei Province(B2019201398)

Abstract

The benzimidazole-fused tricyclic iminosugars 1 and 2 derived from D-ribose inhibited β-glucosidase significantly. On the basis of the structural modification on the phenyl ring of 1 and 2, thirty novel tricyclic iminosugars 11a~11g, 12a~12g, 13a~13h and 14a~14h bearing mono-substituent on the different positions on phenyl ring were synthesized through Mitsunobu reaction. The inhibitory activities of newly synthesized compounds were tested against β-glucosidase (almonds). The results showed that compound 13e and the mixture of 13f and 14f exhibited significantly β-glucosidase inhibitory activities with IC50 values of 0.49 and 0.25 μmol/L, respectively, higher than that of the positive control, miglitol. The analysis of structure activity relationship (SAR) suggested that six-membered iminosugar ring in such fused tricyclic iminosugars was on the benefit of the compounds against β-glucosidase. The electron donor group on the 3' or 4' positions on the phenyl ring, such as methyl or methoxyl, would greatly promote the β-glucosidase inhibitory activities of the inhibitors.

Cite this article

Fengxing Li , Xin Lu , Xu Liu , Lulu Su , Xiaoliu Li , Hua Chen . Structural Modification of Benzimidazole-Iminosugars and Their Inhibitory Activities against β-Glycosidases[J]. Chinese Journal of Organic Chemistry, 2021 , 41(9) : 3643 -3651 . DOI: 10.6023/cjoc202105003

References

[1]
Ferdinando Febbraio, F.; Ionata, E.; Marcolongo, L. Biotechnol. Appl. Biochem. 2020, 67, 602.
[2]
Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.; Pretorius, I. S. Microbiol. Mol. Biol. Rev. 2002, 66, 506.
[3]
Ketudat Cairns, J. R.; Mahong, B.; Baiya, S.; Jeon, J.-S. Plant Sci. 2015, 241, 246.
[4]
Martínez-Bailén, M.; Jiménez-Ortega, E.; Carmona, A. T.; Robina, I.; Sanz-Aparicio, J.; Talens-Perales, D.; Polaina, J.; Matassini, C.; Cardona, F.; Moreno-Vargas, A. J. Bioorg. Chem. 2019, 89, 103026.
[5]
Futerman, A. H.; van Meer, G. Nat. Rev. Mol. Cell Biol. 2004, 5, 554.
[6]
Li, Y.; Sekine, T.; Funayama, M.; Li, L.; Yoshino, H.; Nishioka, K.; Tomiyama, H.; Hattori, N. Aging 2014, 35, e933.
[7]
Zhou, X.; Huang, Z.; Yang, H. W.; Jiang, Y.; Wei, W.; Li, Q. Y.; Mo, Q. G.; Liu, J. L. Biomed. Pharmacother. 2017, 91, 504.
[8]
Matassini, C.; Warren, J.; Wang, B.; Goti, A.; Cardona, F.; Morrone, A.; Bols, M. Angew. Chem. 2020, 132, 10552.
[9]
Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; Rose, C.; Billette de Villemeur, T.; Berger, M. G. J. Mol. Sci. 2017, 18, 441.
[10]
Chahine, L. M.; Qiang, J.; Ashbridge, E.; Minger, J.; Yearout, D.; Horn, S.; Colcher, A.; Hurtig, H. I.; Lee, V. M.; Van Deerlin, V. M.; Leverenz, J. B.; Siderowf, A. D.; Trojanowski, J. Q.; Zabetian, C. P.; Chen-Plotkin, A. JAMA Neurol. 2013, 70, 852.
[11]
Hou, J. F.; Ye, X. S. Sci. Sin. Chim. 2012, 42, 1732. (in Chinese).
[11]
( 侯精飞, 叶新山, 中国科学: 化学, 2012, 42, 1732.)
[12]
Li, J.; Xie, X. L.; Wang, J. J.; Wang, X. M.; Li, J.; Wang, P. Prog. Chem. 2014, 26, 889. (in Chinese).
[12]
( 李京, 谢小丽, 王佳佳, 王晓敏, 李静, 王鹏, 化学进展, 2014, 26, 889.)
[13]
Stutz, A. E. Iminosugars as Glycosidase Inhibitors, Nojirimycin and Beyond, Weinheim, Wiley-VCH, 1999.
[14]
Dai, Y. W.; Hartke, R.; Li, Chao.; Yang, Q.; Liu, J. O.; Wang, L. X. ACS Chem. Biol. 2020, 15, 2662.
[15]
He, X. P.; Zeng, Y. L.; Zang, Y.; Li, J.; Field, R. A.; Chen, G. R. Carbohydr. Res. 2016, 429, 1.
[16]
Wei, M. M.; Wang, Y. S.; Ye, X. S. Med. Res. Rev. 2018, 38, 1003.
[17]
Kiappes, J. L.; Hill, M. L.; Alonzi, D. S.; Miller, J. L.; Iwaki, R.; Sayce, A. C.; Caputo, A. T.; Kato, A.; Zitzmann, N. ACS Chem. Biol. 2018, 13, 60.
[18]
Li, Y. X.; Jia, Y. M.; Yu, C. Y. Prog. Chem. 2018, 35, 586. (in Chinese).
[18]
( 李意羡, 贾月梅, 俞初一, 化学进展, 2018, 35, 586.)
[19]
Chen, H.; Hao, L.; Zhu, M.; Yang, T. Y.; Wei, S. N.; Qin, Z. B.; Zhang, P. Z.; Li, X. L. Bioorg. Med. Chem. Lett. 2014, 24, 3426.
[20]
Yin, Z. Q.; Zhu, M.; Wei, S. N.; Shao, J.; Hou, Y. H.; Chen, H.; Li, X. L. Bioorg. Med. Chem. Lett. 2016, 26, 1738.
[21]
Niu, L. P.; Xing, X. K.; Li, X. L.; Chen, H. Chin. J. Org. Chem. 2019, 39, 771. (in Chinese).
[21]
( 牛丽萍, 邢顺凯, 李小六, 陈华, 有机化学, 2019, 39, 771.)
[22]
Sun, J. J.; Kang, Y. Q.; Gao, L. G.; Lu, X.; Ju, H. H.; Li, X. L.; Chem, H. Carbohydr. Res. 2019, 478, 10.
[23]
Yan, L. H.; Lui, H.; Sun, J. J.; Gao, L. G.; Lu, X.; Niu, L. P.; Li, X. L.; Chem, H. Carbohydr. Res. 2019, 485, 107807.
[24]
Liu, X.; Su, L. L.; Zhou, Z. X.; Niu, L. P.; Gao, L. G.; Ju, H. H.; Li, F, X.; Li, X. L.; Chem, H. Chin. J. Org. Chem. 2021, 41, 2861. (in Chinese).
[24]
( 刘旭, 苏路路, 周照希, 牛丽萍, 高利刚, 琚欢欢, 李丰兴, 李小六, 陈华, 有机化学, 2021, 41, 2861.)
[25]
Bombard, S.; Maillet, M.; Capmau, M. L. Carbohydr. Res. 1995, 275, 433.
Outlines

/