Chinese Journal of Organic Chemistry >
Design, Synthesis and Anticancer Activity Studies of Novel Quinoline-Indole Derivatives
Received date: 2021-03-30
Revised date: 2021-05-25
Online published: 2021-06-29
Supported by
National Natural Science Foundation of China(81703541); National Natural Science Foundation of China(81673322); National Natural Science Foundation of China(U2004123); China Postdoctoral Science Foundation(2018M632812)
As the continuation of our studies on novel and effective anti-cancer agents, a series of novel quinoline-indole derivatives were firstly designed and synthesized by molecular hybridization strategy and Lewis acid‐catalyzed coupling reactions. Their antiproliferative potency on gastric cancer cell line MGC-803, colon cancer cell line HCT-116, and esophageal cancer cell line Kyse450 of all the targeted compounds was explored using methyl thiazolyl tetrazolium (MTT) assay. 2-Chloro-4-(5-methoxy-1H-indol-3-yl)quinoline (9b) exhibited potently inhibitory activity against MGC-803, HCT-116, and Kyse450 cells with IC50 values of 0.58, 0.68 and 0.59 µmol•L–1. Further mechanism studies suggested that compound 9b inhibited the cell colony formation of MGC-803 and HGC-27 cells. Compound 9b induced an intrinsic apoptosis and down- regulated the levels of apoptosis related proteins in MGC-803 and HGC-27 cells. Meanwhile, compound 9b arrested MGC-803 and HGC-27 cells at the G2/M phase. Taken together, these results indicated that compound 9b might be a valuable lead compound for anticancer agents.
Key words: quinoline; indole; anticancer activity; proliferation; apoptosis; cell cycle arrest
Shenghui Wang , Yongfeng Guan , Xiujuan Liu , Xinying Yuan , Guangxi Yu , Yinru Li , Yanbing Zhang , Jian Song , Wen Li , Saiyang Zhang . Design, Synthesis and Anticancer Activity Studies of Novel Quinoline-Indole Derivatives[J]. Chinese Journal of Organic Chemistry, 2021 , 41(9) : 3617 -3624 . DOI: 10.6023/cjoc202103059
| [1] | Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Ca-Cancer J. Clin. 2021, 71, 209. |
| [2] | Boshuizen, J.; Peeper, D. S. Mol. Cell. 2020, 78, 1002. |
| [3] | Matada, B. S.; Pattanashettar, R.; Yernale, N. G. Bioorg. Med. Chem. 2021, 32, 115973. |
| [4] | Yadav, P.; Shah, K. Bioorg. Chem. 2021, 109, 104639. |
| [5] | Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2015, 97, 871. |
| [6] | Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Arabian J. Chem. 2019, 12, 4920. |
| [7] | Jentsch, N. G.; Hart, A. P.; Hume, J. D.; Sun, J.; McNeely, K. A.; Lama, C.; Pigza, J. A.; Donahue, M. G.; Kessl, J. J. ACS Med. Chem. Lett. 2018, 9, 1007. |
| [8] | Yang, S.-M.; Martinez, N. J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A. Q.; Xu, X.; Shah, P.; Cheff, D.; Wang, X. S.; Roth, J.; Lal-Nag, M.; Dunford, J. E.; Oppermann, U.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D. J. J. Med. Chem. 2018, 61, 4883. |
| [9] | Zhong, C. C.; Chen, F.; Yang, J. L.; Jia, W. W.; Li, L.; Cheng, C.; Du, F. F.; Zhang, S. P.; Xie, C. Y.; Zhang, N. T.; Olaleye, O. E.; Wang, F. Q.; Xu, F.; Lou, L. G.; Chen, D. Y.; Niu, W.; Li, C. Acta Pharmacol. Sin. 2018, 39, 1048. |
| [10] | Golas, J. M.; Arndt, K.; Etienne, C.; Lucas, J.; Nardin, D.; Gibbons, J.; Frost, P.; Ye, F.; Boschelli, D. H.; Boschelli, F. Cancer Res. 2003, 63, 375. |
| [11] | Glen, H.; Mason, S.; Patel, H.; Macleod, K.; Brunton, V. G. BMC Cancer 2011, 11, 309. |
| [12] | Gu, Y.-Y.; Lv, X.-Q.; Ma, X.-D.; Zhang, H.-J.; Ji, Y.-Y.; Ding, W.-Q.; Shen, L. Chin. J. Org. Chem. 2020, 40, 95. (in Chinese). |
| [12] | ( 顾依钰, 吕晓庆, 马晓东, 张浩健, 嵇媛媛, 丁婉婧, 沈立, 有机化学, 2020, 40, 95.) |
| [13] | Khelifi, I.; Naret, T.; Renko, D.; Hamze, A.; Alami, M. Eur. J. Med. Chem. 2017, 127, 1025. |
| [14] | Wu, B.-W.; Cui, X.-X.; Zhu, T.; Wang, S.-H.; Lu, C.-F.; Wang, J.-J.; Dang, H.-X.; Zhang, S.-Y.; Ding, L.-N.; Jin, C.-Y. Chin. J. Org. Chem. 2020, 40, 978. (in Chinese). |
| [14] | ( 吴博文, 崔鑫鑫, 朱挺, 王胜辉, 陆超凡, 王金杰, 党贺祥, 张赛扬, 丁丽娜, 金成允, 有机化学, 2020, 40, 978.) |
| [15] | Zhang, D.-Q.; Liu, X.; Pang, X.-J.; Liu, H.-M.; Zhang, Q.-R. Chin. J. Org. Chem. 2020, 41, 267. (in Chinese). |
| [15] | ( 张丹青, 柳旭, 庞晓静, 刘宏民, 张秋荣, 有机化学, 2020, 41, 267.) |
| [16] | Han, Y.; Dong, W.; Guo, Q.; Li, X.; Huang, L. Eur. J. Med. Chem. 2020, 203, 112506. |
| [17] | Thanikachalam, P. V.; Maurya, R. K.; Garg, V.; Monga, V. Eur. J. Med. Chem. 2019, 180, 562. |
| [18] | Scuto, A.; Kirschbaum, M.; Kowolik, C.; Kretzner, L.; Juhasz, A.; Atadja, P.; Pullarkat, V.; Bhatia, R.; Forman, S.; Yen, Y.; Jove, R. Blood 2008, 111, 5093. |
| [19] | Cross, D.; Ashton, S.; Nebhan, C.; Eberlein, C.; Finlay, M. R. V.; Hughes, G.; Jacobs, V.; Mellor, M.; Red Brewer, M.; Meador, C.; Orme, J.; Spitzler, P.; Powell, S.; Rahi, A.; Taylor, P.; Ward, R. A.; Daunt, P.; Galer, A.; Klinowska, T.; Richmond, G.; Pao, W. Mol. Cancer Ther. 2013, 12, A109. |
| [20] | Fu, D. J.; Cui, X. X.; Zhu, T.; Zhang, Y. B.; Hu, Y. Y.; Zhang, L. R.; Wang, S. H.; Zhang, S. Y. Bioorg. Chem. 2021, 107, 104634. |
| [21] | Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Eur. J. Med. Chem. 2019, 163, 428. |
| [22] | Guo, T.; Liu, Y.; Zhao, Y. H.; Zhang, P. K.; Han, S. L.; Liu, H. M. Tetrahedron Lett. 2016, 57, 4629 |
| [23] | Hu, Y.; Li, Z.-Y.; Ding, Y.-J.; Li, Z.-Y.; Liu, Z.-Y.; Shen, Y.-M. Chin. J. Org. Chem. 2019, 39, 3230. (in Chinese). |
| [23] | ( 胡园, 李震宇, 丁艳娇, 李志颖, 刘志勇, 沈月毛, 有机化学, 2019, 39, 3230.) |
| [24] | Yuan, S.; Yu, B.; Liu, H. M. Adv. Synth. Catal. 2018, 361, 59. |
| [25] | Jian, S.; Gao, Q.-L.; Wu, B.-W.; Li, D.; Shi, L.; Zhu, T.; Lou, J.-F.; Jin, C.-Y.; Zhang, Y.-B.; Zhang, S.-Y.; Liu, H.-M. Eur. J. Med. Chem. 2019, 183, 111731. |
/
| 〈 |
|
〉 |