REVIEWS

Progress in the Synthesis of Aroyl Compounds

  • Liang Liu ,
  • Wenbo Liu ,
  • Dong-Mei Cui ,
  • Ming Zeng
Expand
  • a School of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi 332005
    b College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014
* Corresponding author. E-mail:

Received date: 2021-04-25

  Revised date: 2021-06-07

  Online published: 2021-07-06

Supported by

Natural Science Foundation of Jiangxi Province(21967013); Foundation of Jiangxi Provincial Department of Education(GJJ201825); Science and Technology Project of Jiangxi Provincial Health Committee(202131074)

Abstract

Aroyl compounds exhibit various biological activities and are important fine chemicals as well. Therefore, their synthetic methods have attracted considerable attention. It is the first time to summarize the synthetic methods of aroyl compounds in the past five to eight years. These reactions can be classified into three parts by their reaction mechanism, namely, coupling reaction catalyzed transition metals, the free radical mechanism and aromylation reactions carried out by other mechanisms. It is expected that inspiration of new synthetic methods will be provided for the synthesis of compounds bear aroyl group in this review.

Cite this article

Liang Liu , Wenbo Liu , Dong-Mei Cui , Ming Zeng . Progress in the Synthesis of Aroyl Compounds[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4289 -4305 . DOI: 10.6023/cjoc202104049

References

[1]
Zhu, X.-L.; Tian, X.-Q.; Xu, H.-H.; Wang, H.-M.; Chen, Q.-H.; Zeng, X.-H. Bioorg. Med. Chem. Lett. 2020, 30, 127554.
[2]
Duan, J. X.; Cai, X.; Meng, F.; Lan, L.; Hart, C.; Matteucci, M. J. Med. Chem. 2007, 50, 1001.
[3]
Mai, A.; Massa, S.; Ragno, R.; Cerbara, I.; Jesacher, F.; Loidl, P.; Brosch, G. J. Med. Chem. 2003, 46, 512.
[4]
Han, Y.; Tian, Y.; Wang, R.; Fu, S.; Jiang, J.; Dong, J.; Qin, M.; Hou, Y.; Zhao, Y. Bioorg. Chem. 2020, 104, 104197.
[5]
Turan-Zitouni, G.; Yurttaş, L.; Kaplancıklı, Z. A.; Can, Ö. D.; Demir Özkay, Ü. Med. Chem. Res. 2015, 24, 2406.
[6]
Patch, R. J.; Brandt, B. M.; Asgari, D.; Baindur, N.; Chadha, N. K.; Georgiadis, T.; Cheung, W. S.; Petrounia, I. P.; Donatelli, R. R.; Chaikin, M. A.; Player, M. R. Bioorg. Med. Chem. Lett. 2007, 17, 6070.
[7]
Wang, L.; Guo, D.-G.; Wang, Y.-Y.; Zheng, C.-Z. RSC Adv. 2014, 4, 58895.
[8]
Rane, R. A.; Telvekar, V. N. Bioorg. Med. Chem. Lett. 2010, 20, 5681.
[9]
Çınarlı, M.; Yüksektepe Ataol, Ç.; Çınarlı, E.; İdil, Ö. J. Mol. Struct. 2020, 1213, 128152.
[10]
Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[11]
Bode, K.-D.; Dieterich, D.; Eistert, B.; Gipp, R.; Henecka, H.; Herlinger, H.; Jira, R.; Kramer, D.; Kabbe, H.-J.; Lüttringhaus, A.; Regitz, M.; Schellhammer, C.-W.; Söll, H.; Stetter, H.; Wilms, H.; Wingler, F. Methoden der Organischen Chemie (Houben-Weyl), Thieme, Stuttgart, 1973, p. 268.
[12]
Zhao, W.; Liu, W. Chin. J. Org. Chem. 2015, 35, 55. (in Chinese)
[12]
(赵蔚, 刘伟, 有机化学, 2015, 35, 55.)
[13]
Molle, G.; Bauer, P. J. Am. Chem. Soc. 1982, 104, 3481.
[14]
Bosque, I.; Chinchilla, R.; Gonzalez-Gomez, J. C.; Guijarro, D.; Alonso, F. Org. Chem. Front. 2020, 7, 1717.
[15]
Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.
[16]
Swain, C. G. J. Am. Chem. Soc. 1947, 69, 2306.
[17]
Arthuis, M.; Pontikis, R.; Florent, J.-C. Org. Lett. 2009, 11, 4608.
[18]
Zhao, M.-N.; Ran, L.; Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. ACS Catal. 2015, 5, 1210.
[19]
Tjutrins, J.; Arndtsen, B. A. J. Am. Chem. Soc. 2015, 137, 12050.
[20]
Lian, Z.; Friis, S. D.; Skrydstrup, T. Chem. Commun. 2015, 51, 1870.
[21]
Garrison Kinney, R.; Tjutrins, J.; Torres, G. M.; Liu, N. J.; Kulkarni, O.; Arndtsen, B. A. Nat. Chem. 2018, 10, 193.
[22]
Levesque, T. M.; Kinney, R. G.; Arndtsen, B. A. Chem. Sci. 2020, 11, 3104.
[23]
Quesnel, J. S.; Fabrikant, A.; Arndtsen, B. A. Chem. Sci. 2016, 7, 295.
[24]
Lagueux-Tremblay, P.-L.; Fabrikant, A.; Arndtsen, B. A. ACS Catal. 2018, 8, 5350.
[25]
Odell, L. R.; Russo, F.; Larhed, M. Synlett 2012, 23, 685.
[26]
Ningegowda, R.; Bhaskaran, S.; Sajith, A. M.; Aswathanarayanappa, C.; Padusha, M. S. A.; Shivananju, N. S.; Priya, B. S. Aust. J. Chem. 2017, 70, 44.
[27]
Darbem, M. P.; Kanno, K. S.; de Oliveira, I. M.; Esteves, C. H. A.; Pimenta, D. C.; Stefani, H. A. New. J. Chem. 2019, 43, 696.
[28]
Dong, Y.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Qiao, H.; Wu, Y.; Wu, Y. Org. Chem. Front. 2016, 3, 720.
[29]
Jafarpour, F.; Rashidi-Ranjbar, P.; Kashani, A. O. Eur. J. Org. Chem. 2011, 2011, 2128.
[30]
Sun, N.; Sun, Q.; Zhao, W.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Adv. Synth. Catal. 2019, 361, 2117.
[31]
Ismael, A.; Gevorgyan, A.; Skrydstrup, T.; Bayer, A. Org. Process Res. Dev. 2020, 24, 2665.
[32]
Ryotaro, N.; Hideki, Y.; Koichiro, O. Chem. Lett. 2011, 40, 904.
[33]
Roy, T.; Rydfjord, J.; Sävmarker, J.; Nordeman, P. Tetrahedron Lett. 2018, 59, 1230.
[34]
Wang, Z.; Yin, Z.; Wu, X.-F. Chem.-Eur. J. 2017, 23, 15026.
[35]
Peng, J.-B.; Geng, H.-Q.; Li, D.; Qi, X.; Ying, J.; Wu, X.-F. Org. Lett. 2018, 20, 4988.
[36]
Ying, J.; Le, Z.; Wu, X.-F. Org. Chem. Front. 2020, 7, 2757.
[37]
Ying, J.; Le, Z.; Bao, Z.-P.; Wu, X.-F. Org. Chem. Front. 2020, 7, 1006.
[38]
Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105, 7200.
[39]
Arisawa, M.; Tanii, S.; Yamaguchi, M. Chem. Commun. 2014, 50, 15267.
[40]
Zhang, Y.; Chen, J. L.; Chen, Z. B.; Zhu, Y. M.; Ji, S. J. J. Org. Chem. 2015, 80, 10643.
[41]
Ying, J.; Fu, L.-Y.; Zhou, C.; Qi, X.; Peng, J.-B.; Wu, X.-F. Eur. J. Org. Chem. 2018, 2018, 2780.
[42]
Wang, Y.; Zhou, Y.; Lei, M.; Hou, J.; Jin, Q.; Guo, D.; Wu, W. Tetrahedron 2019, 75, 1180.
[43]
Geng, H.-Q.; Wang, L.-C.; Hou, C.-Y.; Wu, X.-F. Org. Lett. 2020, 22, 1160.
[44]
Higashi, S.; Uno, S.; Ohsuga, Y.; Noumi, M.; Saito, R. Tetrahedron Lett. 2020, 61, 152466.
[45]
Li, Y.; Xiong, W.; Zhang, Z.; Xu, T. J. Org. Chem. 2020, 85, 6392.
[46]
Weng, Y.; Yang, T.; Chen, H.; Chen, Z.; Zhu, M.; Zhan, X. ChemistrySelect 2019, 4, 14233.
[47]
Gong, J.; Hu, K.; Shao, Y.; Li, R.; Zhang, Y.; Hu, M.; Chen, J. Org. Biomol. Chem. 2020, 18, 488.
[48]
Tlili, A.; Schranck, J.; Pospech, J.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 6293.
[49]
Li, W.; Zhang, S.; Feng, X.; Yu, X.; Yamamoto, Y.; Bao, M. Org. Lett. 2021, 23, 2521.
[50]
Luo, L.; Zhou, Z.; Zhu, J.; Lu, X.; Wang, H. Tetrahedron Lett. 2016, 57, 4987.
[51]
Chatupheeraphat, A.; Liao, H.-H.; Srimontree, W.; Guo, L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. J. Am. Chem. Soc. 2018, 140, 3724.
[52]
Liu, Z.; Wang, P.; Yan, Z.; Chen, S.; Mu, T. Beilstein J. Org. Chem. 2020, 16, 645.
[53]
Zhang, Q.; Li, J.; Li, J.; Yuan, S.; Li, D. Tetrahedron Lett. 2020, 61, 152399.
[54]
Monir, K.; Kumarbagdi, A.; Mishra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2014, 356, 1105.
[55]
Kaswan, P.; Pericherla, K.; Saini, H. K.; Kumar, A. RSC Adv. 2015, 5, 3670.
[56]
Li, J. J.; Song, C.; Cui, D.-M.; Zhang, C. Org. Biomol. Chem. 2017, 15, 5564.
[57]
Behera, A.; Ali, W.; Guin, S.; Khatun, N.; Mohanta, P. R.; Patel, B. K. RSC Adv. 2015, 5, 33334.
[58]
Pipaliya, B. V.; Chakraborti, A. K. J. Org. Chem. 2017, 82, 3767.
[59]
Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
[60]
Cao, H.; Pu, W.; Zhang, J.; Yan, P.; Zhang, J.; Xu, S. Synlett 2020, 31, 1287.
[61]
Khatun, N.; Banerjee, A.; Santra, S. K.; Behera, A.; Patel, B. K. RSC Adv. 2014, 4, 54532.
[62]
Joe, C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040.
[63]
Wang, H.; Zhou, S.-L.; Guo, L.-N.; Duan, X.-H. Tetrahedron 2015, 71, 630.
[64]
Yuan, J.-W.; Yin, Q.-Y.; Yang, L.-R.; Mai, W.-P.; Mao, P.; Xiao, Y.-M.; Qu, L.-B. RSC Adv. 2015, 5, 88258.
[65]
Pimpasri, C.; Sumunnee, L.; Yotphan, S. Org. Biomol. Chem. 2017, 15, 4320.
[66]
Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Lett. 2015, 17, 4830.
[67]
Wang, C.-M.; Song, D.; Xia, P.-J.; Wang, J.; Xiang, H.-Y.; Yang, H. Chem.-Asian J. 2018, 13, 271.
[68]
Lei, Z.; Banerjee, A.; Kusevska, E.; Rizzo, E.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2019, 58, 7318.
[69]
Meng, Q. Y.; Döben, N.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 19956.
[70]
Bergonzini, G.; Cassani, C.; Wallentin, C.-J. Angew. Chem., Int. Ed. 2015, 54, 14066.
[71]
Dong, S.; Wu, G.; Yuan, X.; Zou, C.; Ye, J. Org. Chem. Front. 2017, 4, 2230.
[72]
Xu, S.-M.; Chen, J.-Q.; Liu, D.; Bao, Y.; Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331.
[73]
Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265.
[74]
Majek, M.; Jacobi von Wangelin, A. Angew. Chem., Int. Ed. 2015, 54, 2270.
[75]
Koziakov, D.; Jacobi von Wangelin, A. Org. Biomol. Chem. 2017, 15, 6715.
[76]
Xu, G.-Q.; Xiao, T.-F.; Feng, G.-X.; Liu, C.; Zhang, B.; Xu, P.-F. Org. Lett. 2021. 23, 2846.
[77]
Zhu, H.-L.; Zeng, F.-L.; Chen, X.-L.; Sun, K.; Li, H.-C.; Yuan, X.-Y.; Qu, L.-B.; Yu, B. Org. Lett. 2021, 23, 2976.
[78]
Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.
[79]
Jafarpour, F.; Abbasnia, M. J. Org. Chem. 2016, 81, 11982.
[80]
Gouthami, P.; Chavan, L. N.; Chegondi, R.; Chandrasekhar, S. J. Org. Chem. 2018, 83, 3325.
[81]
Pan, Z.; Song, C.; Zhou, W.; Cui, D.-M.; Zhang, C. New. J. Chem 2020, 44, 6182.
[82]
Chauhan, J.; Luthra, T.; Sen, S. Eur. J. Org. Chem. 2018, 2018, 4776.
[83]
Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. Angew. Chem., Int. Ed. 2007, 46, 704.
[84]
Han, L.; Xing, P.; Jiang, B. Org. Lett. 2014, 16, 3428.
[85]
Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H. B. Chem. Rev. 2006, 106, 2943.
[86]
Lee, S.; Kim, S. A.; Jang, H.-Y. ACS Omega 2019, 4, 17934.
[87]
Zhao, P.; Yu, X.-X.; Zhou, Y.; Geng, X.; Wang, C.; Huang, C.; Wu, Y.-D.; Zhu, Y.-P.; Wu, A.-X. Org. Lett. 2020, 22, 7103.
Outlines

/