Chinese Journal of Organic Chemistry >
Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor
Received date: 2021-05-25
Revised date: 2021-06-22
Online published: 2021-07-06
Supported by
National Natural Science Foundation of China(21725204); National Natural Science Foundation of China(21901127); China Postdoctoral Science Foundation(2018M640225); China Postdoctoral Science Foundation(2019T120179)
An iridium-catalyzed intermolecular N—N coupling reaction using various N-benzoyloxyamides as acyl nitrene precursor for hydrazide synthesis has been developed. Unlike the carboxylic acid-derived dioxazolones used in previous report, this type of precursors allows the efficient synthesis of both acyl and oxycarbonyl substituted hydrazines from readily accessible precursors. Computational chemistry studies indicated that formation of the metal-acylnitrenoid intermediates via intramolecular hydrogen bond-assisted N—O cleavage may be the rate-determining step, and the subsequent nucleophilic attack of metal-acylnitrenoid by arylamines may be assisted by Cl…HN hydrogen bond to form the N—N bond.
Key words: iridium catalysis; nitrene; N—N coupling; hydrazide; N—H insertion
Fangfang Song , Shiyang Zhu , Hao Wang , Gong Chen . Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 4050 -4058 . DOI: 10.6023/cjoc202105044
[1] | (a) Ke, S.; Sun, T.; Liang, Y.; Yang, Z. Chin. J. Org. Chem. 2010, 30, 1820. (in Chinese) |
[1] | (柯少勇, 孙婷婷, 梁英, 杨自文, 有机化学, 2010, 30, 1820.) |
[1] | (b) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794. |
[1] | (c) Chen, L.; Deng, Z.; Zhao, C. ACS Chem. Biol. 2021, 16, 559. |
[2] | (a) Okuhara, M.; Kuroda, Y.; Goto, T.; Okamoto, M.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1980, 33, 13. |
[2] | (b) Ogita, T.; Gunji, S.; Fukazawa, Y.; Terahara, A.; Kinoshita, T.; Nagaki, H.; Beppu, T. Tetrahedron Lett. 1983, 24, 2283. |
[2] | (c) Broberg, A.; Menkis, A.; Vasiliauskas, R. J. Nat. Prod. 2006, 69, 97. |
[2] | (d) Wang, K.-K. A.; Ng, T. L.; Wang, P.; Huang, Z.; Balskus, E. P.; van der Donk, W. A. Nat. Commun. 2018, 9, 3687. |
[3] | Forquet, V.; Sabaté, C. M.; Jacob, G.; Guelou, Y.; Delalu, H.; Darwich, C. Chem.-Asian J. 2015, 10, 1668. |
[4] | Diccianni, J. B.; Hu, C.; Diao, T. Angew. Chem.,Int. Ed. 2016, 55, 7534. |
[5] | (a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205. |
[5] | (b) Wolter, M.; Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803. |
[6] | (a) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595. |
[6] | (b) Feng, G.; Wang, X.; Jin, J. Eur. J. Org. Chem. 2019, 6728. |
[6] | (c) Chen, J.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2020, 142, 14455. |
[7] | Guo, Q.; Lu, Z. Synthesis 2017, 49, 3835. |
[8] | (a) Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571. |
[8] | (b) Pandit, P.; Yamamoto, K.; Nakamura, T.; Nishimura, K.; Kurashige, Y.; Yanai, T.; Nakamura, G.; Masaoka, S.; Furukawa, K.; Yakiyama, Y.; Kawano, M.; Higashibayashi, S. Chem. Sci. 2015, 6, 4160. |
[8] | (c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074. |
[8] | (d) Feng, N.; Hou, Z.; Xu, H. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese) |
[8] | (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.) |
[8] | (e) Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 2019, 5646. |
[8] | (f) Ryan, M. C.; Kim, Y. J.; Gerken, J. B.; Wang, F.; Aristov, M. M.; Martinelli, J. R.; Stahl, S. S. Chem. Sci. 2020, 11, 1170. |
[8] | (g) Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902. |
[9] | (a) Wallace, R. G. Aldrichim. Acta 1980, 13, 3. |
[9] | (b) Vidal, J.; Hannachi, J. C.; Hourdin, G.; Mulatier, J. C.; Collet, A. Tetrahedron Lett. 1998, 39, 8845. |
[9] | (c) Kang, C. W.; Sarnowski, M. P.; Elbatrawi, Y. M.; Del Valle, J. R. J. Org. Chem. 2017, 82, 1833. |
[9] | (d) Lei, L.; Li, C.; Mo, D. Chin. J. Org. Chem. 2019, 39, 2989. (in Chinese) |
[9] | (雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.) |
[9] | (e) Zhang, Y.; He, J.; Song, P.; Wang, Y.; Zhu, S. CCS Chem. 2020, 2, 2259. |
[10] | (a) Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510. |
[10] | (b) Kono, M.; Harada, S.; Nemoto, T. Chem.-Eur. J. 2019, 25, 3119. |
[10] | (c) Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Alvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Perez, P. J. J. Am. Chem. Soc. 2017, 139, 2216. |
[10] | (d) Dehghany, M.; Eshon, J.; Roberts, J. M.; Schomaker, J. M. In Silver Catalysis in Organic Synthesis, Vol. 4, Eds.: Li, C.-J.; Bi, X., John Wiley & Sons, Weinheim, 2019, Chapter 8, pp. 439-532. |
[11] | (a) Shimbayashi, T.; Sasakura, K.; Eguchi, A.; Okamoto, K.; Ohe, K. Chem.-Eur. J. 2019, 25, 3156. |
[11] | (b) van Vliet, K. M.; de Bruin, B. ACS Catal. 2020, 10, 4751. |
[11] | (c) Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Org. Chem. Front. 2021, 8, 1677. |
[11] | (d) Hong, S. Y.; Hwang, Y.; Lee, M.; Chang, S. Acc. Chem. Res. 2021, 54, 2683. |
[11] | (e) Wu, L.-Y.; Zhong, D.; Liu, W.-B. Chin. J. Org. Chem. 2021, 41, 4083. (in Chinese) |
[11] | (邬林洋, 钟大猷, 刘文博, 有机化学, 2021, 41, 4083.) |
[12] | (a) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862. |
[12] | (b) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2013, 15, 3014. |
[12] | (c) John, A.; Byun, J.; Nicholas, K. M. Chem. Commun. 2013, 49, 10965. |
[12] | (d) Zhou, B.; Du, J.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 592. |
[12] | (e) Shi, J.; Zhao, G.; Wang, X.; Xu, H. E.; Yi, W. Org. Biomol. Chem. 2014, 12, 6831. |
[12] | (f) Huh, S.; Hong, S. Y.; Chang, S. Org. Lett. 2019, 21, 2808. |
[12] | (g) Wang, H.; Park, Y.; Bai, Z. Q.; Chang, S.; He, G.; Chen, G. J. Am. Chem. Soc. 2019, 141, 7194. |
[12] | (h) Guo, Q.; Ren, X.; Lu, Z. Org. Lett. 2019, 21, 880. |
[12] | (i) Jung, H.; Keum, H.; Kweon, J.; Chang, S. J. Am. Chem. Soc. 2020, 142, 5811. |
[13] | (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., nt. Ed. 2005, 44, 5188. |
[13] | (b) Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D. J. Chem. Commun. 2011, 47, 4624. |
[13] | (c) Zhou, H.; Hong, J.; Huang, J.; Chen, Z. Asian J. Org. Chem. 2017, 6, 817. |
[13] | (d) Li, W. H.; Dong, L. Adv. Synth. Catal. 2018, 360, 1104. |
[13] | (e) Bakhoda, A.; Jiang, Q.; Badiei, Y. M.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. Angew. Chem., nt. Ed. 2019, 58, 3421. |
[13] | (f) Yoshitake, M.; Hayashi, H.; Uchida, T. Org. Lett. 2020, 22, 4021. |
[14] | Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378. |
[15] | Ball, R. G.; Graham, W. A. G.; Heinekey, D. M.; Hoyano, J. K.; McMaster, A. D.; Mattson, B. M.; Michel, S. T. Inorg. Chem. 1990, 29, 2023. |
[16] | Le Grel, P.; Salaün, A.; Mocquet, C.; Le Grel, B.; Roisnel, T.; Potel, M. J. Org. Chem. 2011, 76, 8756. |
[17] | Han, S.; Shin, Y.; Sharma, S.; Mishra, N. K.; Park, J.; Kim, M.; Kim, M.; Jang, J.; Kim, I. S. Org. Lett. 2014, 16, 2494. |
[18] | Zhan, F.; Liang, G. Angew. Chem., nt. Ed. 2013, 52, 1266. |
/
〈 |
|
〉 |