REVIEWS

Quantitative Thermodynamic and Kinetic Parameters of Radical

  • Mouxin Huang ,
  • Zongbin Jia ,
  • Sanzhong Luo ,
  • Jin-Pei Cheng
Expand
  • a Center for Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084
    b Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
    c University of Chinese Academy of Sciences, Beijing 100490
    d State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-06-08

  Revised date: 2021-06-27

  Online published: 2021-07-13

Supported by

National Natural Science Foundation of China(21672217); National Natural Science Foundation of China(21861132003); National Natural Science Foundation of China(22031006)

Abstract

Radical chemistry has gained its renaissence in the past decade and trendendous progresses have been witnessed in synthetic and material chemistry. However, mechanism studies are largely lagging behind comparing with rapid paces in the development of synthetic methodologies. On the other hand, the study of radical species remains a central theme in physial organic chemistry, and a large amount of thermodynamic and kinetic data on radicals have been generated over a century's reserch. Unfortuately, there has been no systematic compilation and curation of these quatitative data that are dispersedly distributed and buried in literature. As a result, most synthetic chemists are not acquainted with these valuable data. In this review, we aim in compiling and curating thermodynamic and kinetic parameters of radicals, that may hopefully provide a quantitative data basis for rational development and evolution of radical chemistry. The key parameters include radical stability energy (RSE), radical lifetime (τ), substituent constant (σ) and electrophilic index (ω). Fundamental concepts such as radical stability, Class S/O radical substitution effect, persistent/transient radical effect will be discussed on the basis of data.

Cite this article

Mouxin Huang , Zongbin Jia , Sanzhong Luo , Jin-Pei Cheng . Quantitative Thermodynamic and Kinetic Parameters of Radical[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3892 -3902 . DOI: 10.6023/cjoc202106018

References

[1]
Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757.
[2]
(a) Walling, C. Tetrahedron 1985, 41, 3887.
[2]
(b) Ingold, K. U. Pure Appl. Chem. 1997, 69, 241.
[3]
Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
[4]
(a) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
[4]
(b) Shashni, B.; Nagasaki, Y. J. Pers. Med. 2021, 11, 92.
[5]
(a) Jeschke, P. ChemBioChem 2004, 5, 571.
[5]
(b) Reichel, M.; Karaghiosoff, K. Angew. Chem., Int. Ed. 2020, 59, 12268.
[6]
(a) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303.
[6]
(b) Huang, Y.; Egap, E. Polym. J. 2018, 50, 603.
[7]
McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493.
[8]
Xue, X.-S.; Ji, P.; Zhou, B.; Cheng, J.-P. Chem. Rev. 2017, 117, 8622.
[9]
(a) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979.
[9]
(b) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473.
[9]
(c) Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A. J. Am. Chem. Soc. 1988, 110, 1229.
[10]
Bordwell, F. G.; Cheng, J. P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2872.
[11]
(a) Bordwell, F. G.; Cheng, J. P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867.
[11]
(b) Bordwell, F. G.; Cheng, J. P.; Seyedrezai, S. E.; Wilson, C. A. J. Am. Chem. Soc. 1988, 110, 8178.
[12]
Bordwell, F. G.; Cheng, J. J. Am. Chem. Soc. 1991, 113, 1736.
[13]
Bordwell, F. G.; Zhang, X. M.; Cheng, J. P. J. Org. Chem. 1993, 58, 6410.
[14]
Bordwell, F. G.; Zhang, X.; Alnajjar, M. S. J. Am. Chem. Soc. 1992, 114, 7623.
[15]
Bordwell, F. G.; Harrelson, J. A.; Lynch, T. Y. J. Org. Chem. 1990, 55, 3337.
[16]
(a) Zhang, X. M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968.
[16]
(b) Bordwell, F. G.; Zhang, X. M. Acc. Chem. Res. 1993, 26, 510.
[17]
Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE): iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn
[18]
Cheng, J.-P.; Lu, Y.; Liu, B.; Zhao, Y.-X.; Wang, D.-F.; Sun, Y.-K.; Mi, J. -L. Sci. Sin. Chim. 1998, 31, 164 (in Chinese)
[18]
(程津培, 鲁云, 刘博, 赵永昱, 王涤非, 孙永恺, 米江林, 中国科学: 化学, 1998, 31, 164.)
[19]
Walter, R. I. J. Am. Chem. Soc. 1966, 88, 1923.
[20]
(a) Arnett, E. M.; Amarnath, K.; Harvey, N. G.; Cheng, J. J. Am. Chem. Soc. 1990, 112, 344.
[20]
(b) Parker, V. D. J. Am. Chem. Soc. 1992, 114, 7458.
[20]
(c) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. 1993, 26, 287.
[21]
(a) Cheng, J. -P.; Zhao, Y.-X.; Hai, Z.-W. Sci. Sin. Chim. 1995, 28, 804. (in Chinese)
[21]
(程津培, 赵永显, 还振威, 中国科学: 化学, 1995, 28, 804.)
[21]
(b) Cheng, J.-P. Ph.D. Dissertation, Northwestern University, Evanston, 1987.
[22]
(a) Jiang, X.; Ji, G. J. Org. Chem. 1992, 57, 6051.
[22]
(b) Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105, 1221.
[23]
(a) Cheng, J.-P.; Liu, B.; Zhao, Y.; Wen, Z.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 9987.
[23]
(b) Cheng, J.-P.; Liu, B.; Zhao, Y.; Sun, Y.; Zhang, X.-M.; Lu, Y. J. Org. Chem. 1999, 64, 604.
[24]
Cheng, J.-P.; Zhao, Y. Tetrahedron 1993, 49, 5267.
[25]
(a) Viehe, H. G.; Janousek, Z.; Merenyi, R.; Stella, L. Acc. Chem. Res. 1985, 18, 148.
[25]
(b) Bordwell, F. G.; Lynch, T. Y. J. Am. Chem. Soc. 1989, 111, 7558.
[26]
Zhao, Y.-X.; Hai, Z.-W.; Cheng, J.-P. Acta Chim. Sinica 1994, 52, 908. (in Chinese)
[26]
(赵永显, 还振威, 程津培, 化学学报, 1994, 52, 908.)
[27]
(a) Wen, Z.; Li, Z.; Shang, Z.; Cheng, J.-P. J. Org. Chem. 2001, 66, 1466.
[27]
(b) Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2003, 68, 4604.
[27]
(c) Nam, P.-C.; Nguyen, M. T.; Chandra, A. K. J. Phys. Chem. A 2005, 109, 10342.
[27]
(d) Menon, A. S.; Henry, D. J.; Bally, T.; Radom, L. Org. Biomol. Chem. 2011, 9, 3636.
[28]
Cheng, J. -P.; Zhao, Y. -Y.; Yuan, Y. -F. Chem. Bull. 1993, 6, 18. (in Chinese)
[28]
(程津培, 赵永昱, 袁耀峰, 化学通报, 1993, 6, 18.)
[29]
Hicks, R. G. Org. Biomol. Chem. 2007, 5, 1321.
[30]
Griller, D.; Ingold, K. U. Acc. Chem. Res. 1976, 9, 13.
[31]
Bachmann, W. E.; Wiselogle, F. Y. J. Org. Chem. 1936, 01, 354.
[32]
Daikh, B. E.; Finke, R. G. J. Am. Chem. Soc. 1992, 114, 2938.
[33]
Fischer, H. J. Am. Chem. Soc. 1986, 108, 3925.
[34]
Fischer, H. Chem. Rev. 2001, 101, 3581.
[35]
(a) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74.
[35]
(b) Studer, A. Chem.-Eur. J. 2001, 7, 1159.
[36]
(a) Maciel, G. E.; McIver, J. W.; Ostlund, N. S.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 1.
[36]
(b) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459.
[36]
(c) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.
[37]
(a) Michiyuki, T.; Komeyama, K. Asian J. Org. Chem. 2020, 9, 343.
[37]
(b) Demarteau, J.; Debuigne, A.; Detrembleur, C. Chem. Rev. 2019, 119, 6906.
[37]
(c) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361.
[38]
Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Ramis Cladera, V.-A.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501.
[39]
(a) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152.
[39]
(b) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
[39]
(c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
[40]
(a) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.; Zhu, L.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 2510.
[40]
(b) Wang, F.; Wang, D.; Zhou, Y.; Liang, L.; Lu, R.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2018, 57, 7140.
[40]
(c) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.
[41]
(a) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.
[41]
(b) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[41]
(c) Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
[41]
(d) Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295.
[41]
(e) Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812.
[42]
(a) Kratish, Y.; Kostenko, A.; Kaushansky, A.; Tumanskii, B.; Bravo-Zhivotovskii, D.; Apeloig, Y. Angew. Chem., Int. Ed. 2018, 57, 8275.
[42]
(b) Kondo, T.; Tsuji, Y.; Watanabe, Y. Tetrahedron Lett. 1988, 29, 3833.
[42]
(c) Kondo, T.; Sone, Y.; Tsuji, Y.; Watanabe, Y. J. Organomet. Chem. 1994, 473, 163.
[43]
Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.
[44]
Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[45]
Alfrey Jr, T.; Price, C. C. J. Polym. Sci. 1947, 2, 101.
[46]
Itô, R.; Migita, T.; Morikawa, N.; Simamura, O. Tetrahedron 1965, 21, 955.
[47]
Yamamoto, T.; Otsu, T. Chem. Ind. (London) 1967, 787.
[48]
Sakurai, H.; Hayashi, S.-I.; Hosomi, A. Bull. Chem. Soc. Jpn. 1971, 44, 1945.
[49]
Kieboom, A. P. G. Tetrahedron 1972, 28, 1325.
[50]
Fisher, T. H.; Meierhoefer, A. W. J. Org. Chem. 1978, 43, 224.
[51]
(a) Leigh, W. J.; Arnold, D. R.; Humphreys, R. W. R.; Wong, P. C. Can. J. Chem. 1980, 58, 2537.
[51]
(b) Creary, X. J. Org. Chem. 1980, 45, 280.
[52]
Dinçtürk, S.; Jackson, R. A.; Townson, M.; Aǧirbaş, H.; Billingham, N. C.; March, G. J. Chem. Soc., 1981, 1121.
[53]
Jiang, X.-K.; Ji, G.-Z.; Yu, C.-X. Acta Chim. Sinica 1984, 42, 599. (in Chinese)
[53]
(蒋锡夔, 计国桢, 于崇曦, 化学学报, 1984, 42, 599.)
[54]
Ji, G.-Z.; Jiang, X.-K.; Zhang, Y.-H.; Yuan, S.-G.; Yu, C.-X.; Shi, Y.-Q.; Zhang, X.-L.; Shi, W.-T. J. Phys. Org. Chem. 1990, 3, 643.
[55]
(a) Swain, C. G.; Lupton, E. C. J. Am. Chem. Soc. 1968, 90, 4328.
[55]
(b) Swain, C. G.; Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. Soc. 1983, 105, 492.
[56]
Jiang, X.-K. Acc. Chem. Res. 1997, 30, 283.
[57]
Jiang, X.-K.; Liu, W. W.-Z.; Wu, S.-H. J. Phys. Org. Chem. 1994, 7, 96.
[58]
(a) Harris, E. F. P.; Waters, W. A. Nature 1952, 170, 212.
[58]
(b) Walling, C. Pure Appl. Chem. 1967, 15, 69.
[59]
Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
[60]
Wong, M. W.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 6284.
[61]
Wu, J. Q.; Beranek, I.; Fischer, H. Helv. Chim. Acta 1995, 78, 194.
[62]
Giese, B.; He, J.; Mehl, W. Chem. Ber. 1988, 121, 2063.
[63]
Héberger, K.; Lopata, A. J. Org. Chem. 1998, 63, 8646.
[64]
(a) Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 11578.
[64]
(b) Parr, R. G.; Szentpály, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.
[65]
De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Org. Lett. 2007, 9, 2721.
[66]
Jaramillo, P.; Pérez, P.; Contreras, R.; Tiznado, W.; Fuentealba, P. J. Phys. Chem. A 2006, 110, 8181.
[67]
De Vleeschouwer, F.; Geerlings, P.; De Proft, F. Theor. Chem. Acc. 2012, 131, 1245.
[68]
Domingo, L. R.; Pérez, P. Org. Biomol. Chem. 2013, 11, 4350.
[69]
Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D. J. Org. Chem. 2017, 82, 2898.
[70]
Santschi, N.; Nauser, T. ChemPhysChem 2017, 18, 2973.
Outlines

/