Chinese Journal of Organic Chemistry >
Quantitative Thermodynamic and Kinetic Parameters of Radical
Received date: 2021-06-08
Revised date: 2021-06-27
Online published: 2021-07-13
Supported by
National Natural Science Foundation of China(21672217); National Natural Science Foundation of China(21861132003); National Natural Science Foundation of China(22031006)
Radical chemistry has gained its renaissence in the past decade and trendendous progresses have been witnessed in synthetic and material chemistry. However, mechanism studies are largely lagging behind comparing with rapid paces in the development of synthetic methodologies. On the other hand, the study of radical species remains a central theme in physial organic chemistry, and a large amount of thermodynamic and kinetic data on radicals have been generated over a century's reserch. Unfortuately, there has been no systematic compilation and curation of these quatitative data that are dispersedly distributed and buried in literature. As a result, most synthetic chemists are not acquainted with these valuable data. In this review, we aim in compiling and curating thermodynamic and kinetic parameters of radicals, that may hopefully provide a quantitative data basis for rational development and evolution of radical chemistry. The key parameters include radical stability energy (RSE), radical lifetime (τ), substituent constant (σ) and electrophilic index (ω). Fundamental concepts such as radical stability, Class S/O radical substitution effect, persistent/transient radical effect will be discussed on the basis of data.
Mouxin Huang , Zongbin Jia , Sanzhong Luo , Jin-Pei Cheng . Quantitative Thermodynamic and Kinetic Parameters of Radical[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3892 -3902 . DOI: 10.6023/cjoc202106018
[1] | Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757. |
[2] | (a) Walling, C. Tetrahedron 1985, 41, 3887. |
[2] | (b) Ingold, K. U. Pure Appl. Chem. 1997, 69, 241. |
[3] | Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692. |
[4] | (a) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851. |
[4] | (b) Shashni, B.; Nagasaki, Y. J. Pers. Med. 2021, 11, 92. |
[5] | (a) Jeschke, P. ChemBioChem 2004, 5, 571. |
[5] | (b) Reichel, M.; Karaghiosoff, K. Angew. Chem., Int. Ed. 2020, 59, 12268. |
[6] | (a) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303. |
[6] | (b) Huang, Y.; Egap, E. Polym. J. 2018, 50, 603. |
[7] | McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493. |
[8] | Xue, X.-S.; Ji, P.; Zhou, B.; Cheng, J.-P. Chem. Rev. 2017, 117, 8622. |
[9] | (a) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979. |
[9] | (b) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473. |
[9] | (c) Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A. J. Am. Chem. Soc. 1988, 110, 1229. |
[10] | Bordwell, F. G.; Cheng, J. P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2872. |
[11] | (a) Bordwell, F. G.; Cheng, J. P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867. |
[11] | (b) Bordwell, F. G.; Cheng, J. P.; Seyedrezai, S. E.; Wilson, C. A. J. Am. Chem. Soc. 1988, 110, 8178. |
[12] | Bordwell, F. G.; Cheng, J. J. Am. Chem. Soc. 1991, 113, 1736. |
[13] | Bordwell, F. G.; Zhang, X. M.; Cheng, J. P. J. Org. Chem. 1993, 58, 6410. |
[14] | Bordwell, F. G.; Zhang, X.; Alnajjar, M. S. J. Am. Chem. Soc. 1992, 114, 7623. |
[15] | Bordwell, F. G.; Harrelson, J. A.; Lynch, T. Y. J. Org. Chem. 1990, 55, 3337. |
[16] | (a) Zhang, X. M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968. |
[16] | (b) Bordwell, F. G.; Zhang, X. M. Acc. Chem. Res. 1993, 26, 510. |
[17] | Yang, J.-D.; Xue, X.-S.; Ji, P.; Li, X.; Cheng, J.-P. Internet Bond-energy Databank (pKa and BDE): iBonD Home Page, http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn |
[18] | Cheng, J.-P.; Lu, Y.; Liu, B.; Zhao, Y.-X.; Wang, D.-F.; Sun, Y.-K.; Mi, J. -L. Sci. Sin. Chim. 1998, 31, 164 (in Chinese) |
[18] | (程津培, 鲁云, 刘博, 赵永昱, 王涤非, 孙永恺, 米江林, 中国科学: 化学, 1998, 31, 164.) |
[19] | Walter, R. I. J. Am. Chem. Soc. 1966, 88, 1923. |
[20] | (a) Arnett, E. M.; Amarnath, K.; Harvey, N. G.; Cheng, J. J. Am. Chem. Soc. 1990, 112, 344. |
[20] | (b) Parker, V. D. J. Am. Chem. Soc. 1992, 114, 7458. |
[20] | (c) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. 1993, 26, 287. |
[21] | (a) Cheng, J. -P.; Zhao, Y.-X.; Hai, Z.-W. Sci. Sin. Chim. 1995, 28, 804. (in Chinese) |
[21] | (程津培, 赵永显, 还振威, 中国科学: 化学, 1995, 28, 804.) |
[21] | (b) Cheng, J.-P. Ph.D. Dissertation, Northwestern University, Evanston, 1987. |
[22] | (a) Jiang, X.; Ji, G. J. Org. Chem. 1992, 57, 6051. |
[22] | (b) Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105, 1221. |
[23] | (a) Cheng, J.-P.; Liu, B.; Zhao, Y.; Wen, Z.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 9987. |
[23] | (b) Cheng, J.-P.; Liu, B.; Zhao, Y.; Sun, Y.; Zhang, X.-M.; Lu, Y. J. Org. Chem. 1999, 64, 604. |
[24] | Cheng, J.-P.; Zhao, Y. Tetrahedron 1993, 49, 5267. |
[25] | (a) Viehe, H. G.; Janousek, Z.; Merenyi, R.; Stella, L. Acc. Chem. Res. 1985, 18, 148. |
[25] | (b) Bordwell, F. G.; Lynch, T. Y. J. Am. Chem. Soc. 1989, 111, 7558. |
[26] | Zhao, Y.-X.; Hai, Z.-W.; Cheng, J.-P. Acta Chim. Sinica 1994, 52, 908. (in Chinese) |
[26] | (赵永显, 还振威, 程津培, 化学学报, 1994, 52, 908.) |
[27] | (a) Wen, Z.; Li, Z.; Shang, Z.; Cheng, J.-P. J. Org. Chem. 2001, 66, 1466. |
[27] | (b) Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2003, 68, 4604. |
[27] | (c) Nam, P.-C.; Nguyen, M. T.; Chandra, A. K. J. Phys. Chem. A 2005, 109, 10342. |
[27] | (d) Menon, A. S.; Henry, D. J.; Bally, T.; Radom, L. Org. Biomol. Chem. 2011, 9, 3636. |
[28] | Cheng, J. -P.; Zhao, Y. -Y.; Yuan, Y. -F. Chem. Bull. 1993, 6, 18. (in Chinese) |
[28] | (程津培, 赵永昱, 袁耀峰, 化学通报, 1993, 6, 18.) |
[29] | Hicks, R. G. Org. Biomol. Chem. 2007, 5, 1321. |
[30] | Griller, D.; Ingold, K. U. Acc. Chem. Res. 1976, 9, 13. |
[31] | Bachmann, W. E.; Wiselogle, F. Y. J. Org. Chem. 1936, 01, 354. |
[32] | Daikh, B. E.; Finke, R. G. J. Am. Chem. Soc. 1992, 114, 2938. |
[33] | Fischer, H. J. Am. Chem. Soc. 1986, 108, 3925. |
[34] | Fischer, H. Chem. Rev. 2001, 101, 3581. |
[35] | (a) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2020, 59, 74. |
[35] | (b) Studer, A. Chem.-Eur. J. 2001, 7, 1159. |
[36] | (a) Maciel, G. E.; McIver, J. W.; Ostlund, N. S.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 1. |
[36] | (b) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459. |
[36] | (c) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705. |
[37] | (a) Michiyuki, T.; Komeyama, K. Asian J. Org. Chem. 2020, 9, 343. |
[37] | (b) Demarteau, J.; Debuigne, A.; Detrembleur, C. Chem. Rev. 2019, 119, 6906. |
[37] | (c) Pattenden, G. Chem. Soc. Rev. 1988, 17, 361. |
[38] | Kyne, S. H.; Lefèvre, G.; Ollivier, C.; Petit, M.; Ramis Cladera, V.-A.; Fensterbank, L. Chem. Soc. Rev. 2020, 49, 8501. |
[39] | (a) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. Angew. Chem., Int. Ed. 2019, 58, 6152. |
[39] | (b) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522. |
[39] | (c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. |
[40] | (a) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.; Zhu, L.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 2510. |
[40] | (b) Wang, F.; Wang, D.; Zhou, Y.; Liang, L.; Lu, R.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2018, 57, 7140. |
[40] | (c) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036. |
[41] | (a) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307. |
[41] | (b) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683. |
[41] | (c) Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914. |
[41] | (d) Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. |
[41] | (e) Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812. |
[42] | (a) Kratish, Y.; Kostenko, A.; Kaushansky, A.; Tumanskii, B.; Bravo-Zhivotovskii, D.; Apeloig, Y. Angew. Chem., Int. Ed. 2018, 57, 8275. |
[42] | (b) Kondo, T.; Tsuji, Y.; Watanabe, Y. Tetrahedron Lett. 1988, 29, 3833. |
[42] | (c) Kondo, T.; Sone, Y.; Tsuji, Y.; Watanabe, Y. J. Organomet. Chem. 1994, 473, 163. |
[43] | Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96. |
[44] | Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. |
[45] | Alfrey Jr, T.; Price, C. C. J. Polym. Sci. 1947, 2, 101. |
[46] | Itô, R.; Migita, T.; Morikawa, N.; Simamura, O. Tetrahedron 1965, 21, 955. |
[47] | Yamamoto, T.; Otsu, T. Chem. Ind. (London) 1967, 787. |
[48] | Sakurai, H.; Hayashi, S.-I.; Hosomi, A. Bull. Chem. Soc. Jpn. 1971, 44, 1945. |
[49] | Kieboom, A. P. G. Tetrahedron 1972, 28, 1325. |
[50] | Fisher, T. H.; Meierhoefer, A. W. J. Org. Chem. 1978, 43, 224. |
[51] | (a) Leigh, W. J.; Arnold, D. R.; Humphreys, R. W. R.; Wong, P. C. Can. J. Chem. 1980, 58, 2537. |
[51] | (b) Creary, X. J. Org. Chem. 1980, 45, 280. |
[52] | Dinçtürk, S.; Jackson, R. A.; Townson, M.; Aǧirbaş, H.; Billingham, N. C.; March, G. J. Chem. Soc., 1981, 1121. |
[53] | Jiang, X.-K.; Ji, G.-Z.; Yu, C.-X. Acta Chim. Sinica 1984, 42, 599. (in Chinese) |
[53] | (蒋锡夔, 计国桢, 于崇曦, 化学学报, 1984, 42, 599.) |
[54] | Ji, G.-Z.; Jiang, X.-K.; Zhang, Y.-H.; Yuan, S.-G.; Yu, C.-X.; Shi, Y.-Q.; Zhang, X.-L.; Shi, W.-T. J. Phys. Org. Chem. 1990, 3, 643. |
[55] | (a) Swain, C. G.; Lupton, E. C. J. Am. Chem. Soc. 1968, 90, 4328. |
[55] | (b) Swain, C. G.; Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. Soc. 1983, 105, 492. |
[56] | Jiang, X.-K. Acc. Chem. Res. 1997, 30, 283. |
[57] | Jiang, X.-K.; Liu, W. W.-Z.; Wu, S.-H. J. Phys. Org. Chem. 1994, 7, 96. |
[58] | (a) Harris, E. F. P.; Waters, W. A. Nature 1952, 170, 212. |
[58] | (b) Walling, C. Pure Appl. Chem. 1967, 15, 69. |
[59] | Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25. |
[60] | Wong, M. W.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 6284. |
[61] | Wu, J. Q.; Beranek, I.; Fischer, H. Helv. Chim. Acta 1995, 78, 194. |
[62] | Giese, B.; He, J.; Mehl, W. Chem. Ber. 1988, 121, 2063. |
[63] | Héberger, K.; Lopata, A. J. Org. Chem. 1998, 63, 8646. |
[64] | (a) Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 11578. |
[64] | (b) Parr, R. G.; Szentpály, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922. |
[65] | De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Org. Lett. 2007, 9, 2721. |
[66] | Jaramillo, P.; Pérez, P.; Contreras, R.; Tiznado, W.; Fuentealba, P. J. Phys. Chem. A 2006, 110, 8181. |
[67] | De Vleeschouwer, F.; Geerlings, P.; De Proft, F. Theor. Chem. Acc. 2012, 131, 1245. |
[68] | Domingo, L. R.; Pérez, P. Org. Biomol. Chem. 2013, 11, 4350. |
[69] | Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D. J. Org. Chem. 2017, 82, 2898. |
[70] | Santschi, N.; Nauser, T. ChemPhysChem 2017, 18, 2973. |
/
〈 |
|
〉 |