Chinese Journal of Organic Chemistry >
Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes
Received date: 2021-05-27
Revised date: 2021-07-06
Online published: 2021-07-20
Supported by
National Natural Science Foundation of China(22071105); National Natural Science Foundation of China(22031008)
A protocol of electrochemical aziridination of electron-deficient alkenes was reported using phthalhydrazide as nitrogen source. The reaction could be conducted in undivided cell, and the ArI is essential to achieve the transformation. Hypervalent-iodine-stablized nitrene and acetyl hydroxyhydrazine were suggested as the in-situ generated nitrogen source for the stepwise aziridination. This protocol can be applied to the azirdination of α,β-unsaturated esters, amides, nitrile and ketones to give a series N-containing molecules.
Feng Liu , Jie Dai , Xu Cheng . Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 4014 -4020 . DOI: 10.6023/cjoc202105046
[1] | (a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. |
[1] | (b) Magano, J. Chem. Rev. 2009, 109, 4398. |
[1] | (c) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881. |
[1] | (d) Girija, S. S. Mini-Rev. Med. Chem. 2016, 16, 892. |
[1] | (e) Wu, Y.; Zhou, X.; Xiao, W.; Chen, J. Chin. J. Org. Chem. 2020, 40, 3760. (in Chinese) |
[1] | (吴雅莉, 周雪松, 肖文精, 陈加荣, 有机化学, 2020, 40, 3760.) |
[2] | (a) Kwart, H.; Khan, A. J. Am. Chem. Soc. 1967, 89, 1951. |
[2] | (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744. |
[2] | (c) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326. |
[3] | Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073. |
[4] | Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., Chem. Commun. 1984, 1161. |
[5] | (a) Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol. Catal. A 1999, 137, 135. |
[5] | (b) Omura, K.; Uchida, T.; Irie, R.; Katsuki, T. Chem. Commun. 2004, 2060. |
[6] | (a) Jones, J. E.; Ruppel, J. V.; Gao, G.-Y.; Moore, T. M.; Zhang, X. P. J. Org. Chem. 2008, 73, 7260. |
[6] | (b) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264. |
[7] | (a) Muller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52, 1543. |
[7] | (b) Jat, J. L.; Paudyal, M. P.; Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Devarajan, D.; Ess, D. H.; Kuerti, L.; Falck, J. R. Science 2014, 343, 61. |
[8] | (a) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. |
[8] | (b) Chandrachud, P. P.; Jenkins, D. M., Transition Metal Aziridination Catalysts, In Encyclopedia of Inorganic and Bioinorganic Chemistry, Eds.: Chandrachud, P. P.; Jenkins, D. M., John Wiley & Sons, Ltd., pp. 1-11. |
[9] | Roma, E.; Tosi, E.; Miceli, M.; Gasperi, T. Asian J. Org. Chem. 2018, 7, 2357. |
[10] | (a) Li, J.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2005, 7, 5801. |
[10] | (b) Li, J.; Liang, J.-L.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett. 2004, 45, 2685. |
[10] | (c) Richardson, R. D.; Desaize, M.; Wirth, T. Chem.-Eur. J. 2007, 13, 6745. |
[10] | (d) Zhang, H.; Wirth, T. Chin. J. Org. Chem. 2021, 41, 65. (in Chinese) |
[10] | (张怀远, Wirth, T., 有机化学, 2021, 41, 65.) |
[11] | Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Science 2020, 367, 397. |
[12] | (a) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492. |
[12] | (b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. |
[12] | (c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485. |
[12] | (d) Moeller, K. D. Chem. Rev. 2018, 118, 4817. |
[12] | (e) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834. |
[12] | (f) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 7086. |
[12] | (g) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27. |
[12] | (h) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702. |
[12] | (i) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292. |
[12] | (j) Yang, Q.; Wang, X.; Weng, X.; Yang, X.; Xu, X.; Tong, X.; Fang, P.; Wu, X.; Mei, T. Acta Chim. Sinica 2019, 77, 866. (in Chinese) |
[12] | (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.) |
[12] | (k) Noel, T.; Cao, Y. R.; Laudadio, G. Acc. Chem. Res. 2019, 52, 2858. |
[12] | (l) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404. |
[12] | (m) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339. |
[12] | (n) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309. |
[12] | (o) Zhang, H.; Tang, R.; Shi, X.; Jie, L.; Wu, J. Chin. J. Org. Chem. 2019, 39, 1837. (in Chinese) |
[12] | (张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.) |
[12] | (p) Barham, J. P.; König, B. Angew. Chem., Int. Ed. 2020, 59, 11732. |
[12] | (q) Heard, D. M.; Lennox, A. J. J. Angew. Chem., Int. Ed. 2020, 59, 18866. |
[12] | (r) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300. |
[12] | (s) Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cent. Sci. 2020, 6, 1317. |
[12] | (t) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386. |
[12] | (u) Schotten, C.; Nicholls, T. P.; Bourne, R. A.; Kapur, N.; Nguyen, B. N.; Willans, C. E. Green Chem. 2020, 22, 3358. |
[12] | (v) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese) |
[12] | (王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.) |
[12] | (w) Qiu, Y.; Zhu, C.; Stangier, M.; Struwe, J.; Ackermann, L. CCS Chem. 2021, 3, 1529. |
[13] | (a) Siu, T.; Yudin, A. K. J. Am. Chem. Soc. 2002, 124, 530. |
[13] | (b) Sasaki, M.; Dalili, S.; Yudin, A. K. J. Org. Chem. 2003, 68, 2045. |
[13] | (c) Siu, T.; Picard, C. J.; Yudin, A. K. J. Org. Chem. 2005, 70, 932. |
[14] | Chen, J.; Yan, W.-Q.; Lam, C. M.; Zeng, C.-C.; Hu, L.-M.; Little, R. D. Org. Lett. 2015, 17, 986. |
[15] | (a) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 57, 5695. |
[15] | (b) Liu, S.; Li, J.; Wang, D.; Liu, F.; Liu, X.; Gao, Y.; Jie, D.; Cheng, X. Chin. J. Chem. 2019, 37, 570. |
[16] | (a) Ošeka, M.; Laudadio, G.; van Leest, N. P.; Dyga, M.; Bartolomeu, A. d. A.; Gooßen, L. J.; de Bruin, B.; de Oliveira, K. T.; Noël, T. Chem 2021, 7, 255. |
[16] | (b) Liu, S.; Zhao, W.; Li, J.; Wu, N.; Liu, C.; Wang, X.; Li, S.; Zhu, Y.; Liang, Y.; Cheng, X. CCS Chem. 2021, 3, 872. |
[17] | Wang, H.; Shi, J.; Tan, J.; Xu, W.; Zhang, S.; Xu, K. Org. Lett. 2019, 21, 9430. |
[18] | Shen, T.; Lambert, T. H. Science 2021, 371, 620. |
[19] | (a) Zu, B.; Ke, J.; Guo, Y.; He, C. Chin. J. Chem. 2021, 39, 627. |
[19] | (b) Wirth, T. Curr. Opin. Electrochem. 2021, 28, 100701. |
[20] | Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 4990. |
/
〈 |
|
〉 |