ARTICLES

Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes

  • Feng Liu ,
  • Jie Dai ,
  • Xu Cheng
Expand
  • National Demonstration Center for Experimental Chemistry Education, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023
* Corresponding author. E-mail:

Received date: 2021-05-27

  Revised date: 2021-07-06

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China(22071105); National Natural Science Foundation of China(22031008)

Abstract

A protocol of electrochemical aziridination of electron-deficient alkenes was reported using phthalhydrazide as nitrogen source. The reaction could be conducted in undivided cell, and the ArI is essential to achieve the transformation. Hypervalent-iodine-stablized nitrene and acetyl hydroxyhydrazine were suggested as the in-situ generated nitrogen source for the stepwise aziridination. This protocol can be applied to the azirdination of α,β-unsaturated esters, amides, nitrile and ketones to give a series N-containing molecules.

Cite this article

Feng Liu , Jie Dai , Xu Cheng . Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 4014 -4020 . DOI: 10.6023/cjoc202105046

References

[1]
(a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247.
[1]
(b) Magano, J. Chem. Rev. 2009, 109, 4398.
[1]
(c) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881.
[1]
(d) Girija, S. S. Mini-Rev. Med. Chem. 2016, 16, 892.
[1]
(e) Wu, Y.; Zhou, X.; Xiao, W.; Chen, J. Chin. J. Org. Chem. 2020, 40, 3760. (in Chinese)
[1]
(吴雅莉, 周雪松, 肖文精, 陈加荣, 有机化学, 2020, 40, 3760.)
[2]
(a) Kwart, H.; Khan, A. J. Am. Chem. Soc. 1967, 89, 1951.
[2]
(b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744.
[2]
(c) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326.
[3]
Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073.
[4]
Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., Chem. Commun. 1984, 1161.
[5]
(a) Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol. Catal. A 1999, 137, 135.
[5]
(b) Omura, K.; Uchida, T.; Irie, R.; Katsuki, T. Chem. Commun. 2004, 2060.
[6]
(a) Jones, J. E.; Ruppel, J. V.; Gao, G.-Y.; Moore, T. M.; Zhang, X. P. J. Org. Chem. 2008, 73, 7260.
[6]
(b) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264.
[7]
(a) Muller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52, 1543.
[7]
(b) Jat, J. L.; Paudyal, M. P.; Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Devarajan, D.; Ess, D. H.; Kuerti, L.; Falck, J. R. Science 2014, 343, 61.
[8]
(a) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
[8]
(b) Chandrachud, P. P.; Jenkins, D. M., Transition Metal Aziridination Catalysts, In Encyclopedia of Inorganic and Bioinorganic Chemistry, Eds.: Chandrachud, P. P.; Jenkins, D. M., John Wiley & Sons, Ltd., pp. 1-11.
[9]
Roma, E.; Tosi, E.; Miceli, M.; Gasperi, T. Asian J. Org. Chem. 2018, 7, 2357.
[10]
(a) Li, J.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2005, 7, 5801.
[10]
(b) Li, J.; Liang, J.-L.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett. 2004, 45, 2685.
[10]
(c) Richardson, R. D.; Desaize, M.; Wirth, T. Chem.-Eur. J. 2007, 13, 6745.
[10]
(d) Zhang, H.; Wirth, T. Chin. J. Org. Chem. 2021, 41, 65. (in Chinese)
[10]
(张怀远, Wirth, T., 有机化学, 2021, 41, 65.)
[11]
Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Science 2020, 367, 397.
[12]
(a) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[12]
(b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[12]
(c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
[12]
(d) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
[12]
(e) Nutting, J. E.; Rafiee, M.; Stahl, S. S. Chem. Rev. 2018, 118, 4834.
[12]
(f) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 7086.
[12]
(g) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
[12]
(h) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
[12]
(i) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
[12]
(j) Yang, Q.; Wang, X.; Weng, X.; Yang, X.; Xu, X.; Tong, X.; Fang, P.; Wu, X.; Mei, T. Acta Chim. Sinica 2019, 77, 866. (in Chinese)
[12]
(杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.)
[12]
(k) Noel, T.; Cao, Y. R.; Laudadio, G. Acc. Chem. Res. 2019, 52, 2858.
[12]
(l) Sandford, C.; Edwards, M. A.; Klunder, K. J.; Hickey, D. P.; Li, M.; Barman, K.; Sigman, M. S.; White, H. S.; Minteer, S. D. Chem. Sci. 2019, 10, 6404.
[12]
(m) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[12]
(n) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
[12]
(o) Zhang, H.; Tang, R.; Shi, X.; Jie, L.; Wu, J. Chin. J. Org. Chem. 2019, 39, 1837. (in Chinese)
[12]
(张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
[12]
(p) Barham, J. P.; König, B. Angew. Chem., Int. Ed. 2020, 59, 11732.
[12]
(q) Heard, D. M.; Lennox, A. J. J. Angew. Chem., Int. Ed. 2020, 59, 18866.
[12]
(r) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[12]
(s) Liu, J.; Lu, L.; Wood, D.; Lin, S. ACS Cent. Sci. 2020, 6, 1317.
[12]
(t) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386.
[12]
(u) Schotten, C.; Nicholls, T. P.; Bourne, R. A.; Kapur, N.; Nguyen, B. N.; Willans, C. E. Green Chem. 2020, 22, 3358.
[12]
(v) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
[12]
(王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
[12]
(w) Qiu, Y.; Zhu, C.; Stangier, M.; Struwe, J.; Ackermann, L. CCS Chem. 2021, 3, 1529.
[13]
(a) Siu, T.; Yudin, A. K. J. Am. Chem. Soc. 2002, 124, 530.
[13]
(b) Sasaki, M.; Dalili, S.; Yudin, A. K. J. Org. Chem. 2003, 68, 2045.
[13]
(c) Siu, T.; Picard, C. J.; Yudin, A. K. J. Org. Chem. 2005, 70, 932.
[14]
Chen, J.; Yan, W.-Q.; Lam, C. M.; Zeng, C.-C.; Hu, L.-M.; Little, R. D. Org. Lett. 2015, 17, 986.
[15]
(a) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 57, 5695.
[15]
(b) Liu, S.; Li, J.; Wang, D.; Liu, F.; Liu, X.; Gao, Y.; Jie, D.; Cheng, X. Chin. J. Chem. 2019, 37, 570.
[16]
(a) Ošeka, M.; Laudadio, G.; van Leest, N. P.; Dyga, M.; Bartolomeu, A. d. A.; Gooßen, L. J.; de Bruin, B.; de Oliveira, K. T.; Noël, T. Chem 2021, 7, 255.
[16]
(b) Liu, S.; Zhao, W.; Li, J.; Wu, N.; Liu, C.; Wang, X.; Li, S.; Zhu, Y.; Liang, Y.; Cheng, X. CCS Chem. 2021, 3, 872.
[17]
Wang, H.; Shi, J.; Tan, J.; Xu, W.; Zhang, S.; Xu, K. Org. Lett. 2019, 21, 9430.
[18]
Shen, T.; Lambert, T. H. Science 2021, 371, 620.
[19]
(a) Zu, B.; Ke, J.; Guo, Y.; He, C. Chin. J. Chem. 2021, 39, 627.
[19]
(b) Wirth, T. Curr. Opin. Electrochem. 2021, 28, 100701.
[20]
Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 4990.
Outlines

/